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Abstract—We introduce and establish the convergence of a
distributed actor-critic method that orchestrates the coordination
of multiple agents solving a general class of a Markov decision
problem. The method leverages the centralized single-agent actor-
critic algorithm of [1] and uses a consensus-like algorithm for
updating agents’ policy parameters. As an application and to
validate our approach we consider a reward collection problem
as an instance of a multi-agent coordination problem in a
partially known environment and subject to dynamical changes
and communication constraints.

Index Terms—Markov decision processes, actor-critic methods,
consensus, sensor networks, multi-agent coordination.

I. I NTRODUCTION

W E consider a setting where aMarkov Decision Problem
(MDP) problem is to be cooperatively solved by a

group of agents that can simultaneously explore the state-
control space. Each agent can communicate and exchange
information with agents in its vicinity, thus, having the poten-
tial to modify its own policy on the basis of the information
received.

The single-agent version of the problem can be in principle
solved by stochasticDynamic programming (DP). To combat
Bellman’s curse of dimensionality, in this paper we focus onan
Approximate Dynamic Programming (ADP)approach:actor-
critic algorithms [1]. In these algorithms one adopts a ran-
domized class of policies parametrized by a (low-dimensional)
parameter vectorθ and optimizes policy performance with
respect toθ by using a simulation (or a realization) of the
MDP. According to its name, the algorithm interleaves two
steps: (i) a policy improvement step at which it descends
along the performance gradient with respect toθ (the actor
part), and(ii) a policy evaluation step at which it learns an
approximate value function from a sample path that uses the
current policy (the critic part).

Our main contribution is that we develop aDistributed
Multi-agent Actor-Critic (D-AC) algorithm. Our algorithm
allows us to use multiple agents to simultaneously explore
the state-control space. Each agent maintains its ownθ and
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updates it based on local information and information received
from a subset of other agents (e.g., the ones within a certain
communication range). This updating follows a consensus-
like algorithm; such algorithms and their analysis go back
to [2] and have garnered renewed interest [3], [4]. Under
suitable conditions, we show that all agents reach consensus
and converge to the optimalθ. In the algorithm we present,
agents update theirθ’s asynchronously.

The D-AC algorithm provides a useful framework for agent
coordination in dynamic environments. What is particularly
appealing is that we solve a dynamic problem benefiting
from the parallel exploration of the state-control space while
incurring a relatively small communication overhead (agents
only exchange theirθ’s). We note that even though many less
complex schemes have been proposed for agent coordination
(e.g., [5]) they tend to be heuristic or solving a static problem.
Our scheme attempts to approximately solve an MDP using an
ADP method and it fills a void since there has not been much
attention in the ADP literature on distributed approaches.

As an application, we consider multi-robot systems exploit-
ing sensor network capabilities to cope with several tasks,i.e.,
coverage, surveillance, target tracking, foraging, in partially
known environments subject to dynamical changes. To test the
D-AC algorithm, we abstract and generalize those problems
defining areward collection problem, where both the positions
and the values of the rewards change with time. In this
problem a robot swarm explores an unknown and changing
environment looking for the target points and their relative
rewards. Any robot has limited sensing capabilities and is able
to communicate locally with other robots. Problems of this
type, but adapted to coverage control have also been studied
in [5], [6]. We have also considered the coverage problem in
our related preliminary work in [7]. One of the main features
of our algorithm is its ability to continuously adapt to changes
in the environment and the reward structure. Here, we study
a different set of questions and identify an interesting trade-
off: long-range agent communication (and coordination) leads
to faster convergence but at the cost of performance as the
resulting policy “averages” over large parts of the state-control
space, thus, leading to reduced ability to locally extract as
much reward as possible.

The rest of the paper is organized as follows. Sec. II
introduces some preliminaries. Sec. III describes the D-AC
method and establishes its convergence. Sec. IV states the
reward collection problem, proposes a policy, and reports
numerical results. Conclusions are in Sec. V.
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Notational Conventions: All vectors are assumed to be
column vectors. We use lower case boldface letters for vectors
and upper case boldface letters for matrices. Prime denotes
transpose,|| · || the Euclidean norm,0 the vector/matrix of all
zeros, ande the vector of all ones. The element(i, j) of a
matrixA is denoted by(A)ij .

II. PRELIMINARIES

Consider a Markov decision process with finite state and
action spacesX andU , respectively. Letc : X × U 7→ R

be a reward function. Let{µθ,θ ∈ R
n} be a set ofrandomized

stationary policies (RSPs), parametrized byθ. In particular,
µθ(u|x) denotes the probability of taking the actionu given
the statex, under theRSP θ. Both {xk} and {(xk,uk)}
generated by anRSP θ, form Markov chains for everyθ.
We make the following assumption which is typical for actor-
critic algorithms and is also made in [1].

Assumption A
(a) For everyx ∈ X ,u ∈ U , andθ ∈ R

n, we haveµθ(u |
x) > 0.

(b) For every(x,u) ∈ X × U , the mappingθ 7→ µθ(u |
x) is twice differentiable. Furthermore, the function
∇θ lnµθ(u | x) is bounded and has a bounded first
derivative for any fixedx and u.

(c) For every θ ∈ R
n the Markov chains{xk} and

{(xk,uk)} are irreducible and aperiodic, with station-
ary probabilitiesπθ(x) and ηθ(x,u) = πθ(x)µθ(u|x),
respectively.

(d) There is a positive integerI, state x∗ ∈ X , and
ǫ0 > 0 such that for all θ1, . . . ,θI it follows
∑I

k=1(P[θ1] · · ·P[θk])xx∗ ≥ ǫ0 for all x ∈ X , where
P[θ] denotes the transition probability for the Markov
chain {xk} under the RSPθ.

For the setting and policy introduced in Sec. IV-A parts (a),(b)
are automatically satisfied and in part (d) we can takex∗ = 0.

We are interested in finding aθ that maximizes the average
reward function:

α(θ) =
∑

x∈X ,u∈U

c(x,u)ηθ(x,u). (1)

For eachθ define a differential reward functionVθ : X 7→ R,
as solution of the following Poisson equation:

α(θ)+Vθ(x) =
∑

u∈U

µθ(u|x)

[

c(x,u)+
∑

y∈X

p(y|x,u)Vθ(y)

]

,

(2)
wherep(y|x,u) is the probability that the next state isy given
that the current state isx and actionu is taken.Vθ(x) can be
interpreted as the relative reward of starting at statex, that is,
the excess reward we collect on top of the average reward if
we start atx. Define theQ-value function:

Qθ(x,u) = c(x,u) − α(θ) +
∑

y∈X
p(y|x,u)Vθ(y). (3)

The following result is from [8] where for the components of
ψθ(x,u) we write (ψθ,1(x,u), . . . , ψθ,n(x,u)).

Theorem II.1 (Average Reward Gradient) We have

∇α(θ) =
∑

x∈X ,u∈U

ηθ(x,u)Qθ(x,u)ψθ(x,u), (4)

where
ψθ(x,u) = ∇θ lnµθ(u|x). (5)

The actor-critic algorithm works with a parametrization of
theQ-function in terms of a vectorr = (r1, . . . , rm) ∈ R

m:

Qr
θ(x,u) =

∑m
l=1 rlφθ,l(x,u).

For reasons explained in [1], a typical choice for the features
φθ,l(x,u) is to setm = n + 1, φθ,l(x,u) = ψθ,l(x,u) for
l = 1, . . . , n, and fix φθ,n+1(x,u) to the constant function
that is everywhere equal to one except atx = 0 where
φθ,n+1(0,u) = 0 for all u. The critic estimates the param-
eter r on the basis of observations from a sample path of
the Markov process while the actor usesr to compute the
performance gradient and to updateθ.

III. T HE DISTRIBUTED ACTOR-CRITIC (D-AC) METHOD

We haveN agents; thejth agent uses anRSP parametrized
by θj and performs the critic phase of the algorithm on the
basis of its own observations. For the actor phase, each agent
j uses its own estimate of∇α(θj) and any information it
receives from others. In each iteration, every agent performs
a critic update followed by an actor update as described next.

A. Critic update

The critic update for each agentj is the same as in [1]. It
uses aTemporal Difference (TD)learning algorithm ([9]) and
comes in two versions, aTD(1) and aTD(λ) version which
lead to different convergence results. Specifically, consider
agentj and letαj

k ∈ R the average reward estimate at time
k, r

j
k ∈ R

m the estimate of parameter vectorr at timek, and
Z

j
k ∈ R

m the estimate of Sutton’s eligibility trace (see, [1])
at timek. Let alsoθj

k ∈ R
n be the parameter of the actor for

the jth agent at timek. The updates take place at state-action
pairs visited by a single sample path (potentially generated
by a simulation) of the Markov process. Let(Xj

k,U
j
k) be the

state-action pair sampled at timek from the jth agent. The
critic update equations for thejth agent are as follows:

αj
k+1 = αj

k + γj
k(c(Xj

k+1,U
j
k+1) − αj

k), (6)

r
j
k+1 = r

j
k + γj

kd
j
kZ

j
k, (7)

dj
k =c(Xj

k,U
i
k) − αj

k + r
j′

k φθ
j

k

(Xj
k+1,U

j
k+1)

− r
j′

k φθ
j

k

(Xj
k,U

j
k), (8)

where in theTD(1) case

Z
j
k+1 =

{

Z
j
k + φ

θ
j

k

(Xj
k+1,U

j
k+1), if X

j
k+1 6= x∗,

φ
θ

j

k

(Xj
k+1,U

j
k+1), otherwise,

(9)

and in theTD(λ) case, for0 < λ < 1,

Z
j
k+1 = λZj

k + φ
θ

j

k

(Xj
k+1,U

j
k+1). (10)
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In the aboveγj
k is a positive stepsize parameter, andx∗ is

a special state that the Markov process visits infinitely often.
(For the application we consider in Section IV-A we can take
x∗ = (0, 0).) We can think of the critic update as using TD
learning to “learn” r (and the average reward) for a given
θ. If we denote byψθ,l and φθ,l the vectors inR

|X ||U |

(ψθ,l(x,u); ∀x,u) and (φθ,l(x,u); ∀x,u), respectively, it
can be seen that the critic computes an approximate projection
of Q onto the subspace spanned by theφθ,l, l = 1, . . . ,m.
Given our selection of theφθ,l’s, this essentially computes
a projection ofQ onto the subspace spanned by theψθ,l,
l = 1, . . . , n, which according to Thm. II.1 suffices for
computing an approximate gradient ofα(θ).

B. Actor update

The actor update is a gradient descent method which uses
the above estimate of∇α(θ) provided by the critic. Agents
communicate with each other and exchange their parameter
vectorsθj

k. Naturally, some of these messages may not be re-
ceived by agents who happen to be outside the communication
range of the transmitting agent. We denote byT ij the set of
times that agenti receives a message from agentj. We will
assume thatT ij is either empty or infinite, that is, eitherj
never sends messages toi or, if it does, it gets close toi often
enough for its message to be received byi. Supposei receives
a message sent fromj at time k. Then, we lettij(k) be the
time this message was sent, namely,i receivesθj

tij(k). The
actor update iteration is as follows:

θi
k+1 = Aii

k θ
i
k +

∑

j 6=i A
ij
k θ

j
tij(k)

+ βi
kΓ(ri

k)ri′

kφθi
k
(Xi

k+1,U
i
k+1)ψθi

k
(Xi

k+1,U
i
k+1), (11)

whereΓ(·) is a scalar that controls the stepsizeβi
k on the basis

of the value ofri
k. Furthermore,Aij

k = diag(aij
k,1, . . . , a

ij
k,n),

A
ij
k ≥ 0,

∑N
j=1 a

ij
k,l = 1, for all i, l, k, andA

ij
k = 0 if k 6∈ T ij

for all i 6= j. Notice that we setAij
k = 0 if agent i does not

receive the actor parameter from agentj; otherwise it receives
such information and combines it with its own actor parameter
as in (11). Equation (11) differs from the centralized single-
agent version of the actor-critic algorithm in that it uses a
convex combination of availableθj to updateθi. Specifically,
the centralized algorithm is a particular case of (11) where
A

ij
k = 0 if i 6= j andAii

k = I for all i.

C. Convergence

To show the convergence of the D-AC algorithm we rely on
the convergence proof of the centralized actor-critic algorithm
in [1] and the work on distributed stochastic gradient methods
in [10]. The following assumption on information exchange
between agents will be crucial in establishing that the agents
reach consensus on theirθ’s. It is a common assumption
for consensus algorithms [4]. To state the assumption, we
introduce the directed graphG = (N ,E ) with nodes
N = {1, . . . , N} corresponding to the set of agents. An arc
(j, i) ∈ E if and only if T ij is infinite. The graphG represents
the communication pattern between agents.

Assumption B
(a) There is a directed path inG from every node to every

other node.
(b) there exists a positive constantγ such thatAii

k ≥ γI,
∀i, k, andA

ij
k ≥ γI, ∀i, j and k ∈ T ij .

(c) The time between consecutive transmissions ofθ
j
k from

agentj to i is bounded by someB ≥ 0, ∀(j, i) ∈ E .
(d) Communication delays are bounded by someB0 ≥ 0.

Intuitively, this assumption says that(a) information can flow
between any two agents, even indirectly through other agents
via update (11);(b) in the update (11) the weights of the
(local and directly received)θ’s are bounded away from zero;
(c), (d) for every agenti there is a finite delay between two
consecutive receptions of a messageθj from every agentj
directly communicating withi.

Assumption C
For all agents i the stepsizesγi

k, β
i
k and the functionΓ(·)

appearing in (11) satisfy

(a) γi
k, β

i
k are deterministic, nonincreasing, and for somed >

0 satisfy
∑

k β
i
k = ∞,

∑

k(βi
k)2 <∞,

∑

k γ
i
k = ∞,

∑

k(γi
k)2 <∞,

∑

k(βi
k/γ

i
k)d <∞.

(b) For some positive constantsC1 < C2:

||r||Γ(r) ∈ [C1, C2], ∀r ∈ R
m,

||Γ(r) − Γ(s)|| ≤
C2||r − s||

1 + ||r|| + ||s||
, ∀r, s ∈ R

m.

Theorem III.1 (Distributed Actor-Critic) Under
Assumptions A–C the sequences{θi

k} generated by each
agent i according to the distributed actor-critic algorithm
satisfy:

(a) in the TD(1) case

lim inf
k→∞

||∇α(θi
k)|| = 0, ∀i w.p.1;

b) in the TD(λ) case, for eachǫ > 0, there existsλ such
that

lim inf
k→∞

||∇α(θi
k)|| < ǫ, ∀i, w.p.1.

Proof: Consider agenti and as in [1, Sec. 6] define

Hθi(x,u) = ψθi(x,u)φ
′

θi(x,u),

H̄(θi) =
∑

x,u ηθi(x,u)ψθi(x,u)φ
′

θi(x,u).

Let r̄i(θi) be the limit of the critic parameterri
k if the policy

parameterθi was held fixed. The critic part of the algorithm is
identical with the single agent version in [1], hence this limit
exists. The actor update can be written as follows:

θi
k+1 =Aii

k θ
i
k +

∑

j 6=i A
ij
k θ

j
tij(k)

+ βi
kH̄(θi

k)(r̄i(θi
k)Γ(r̄i(θi

k)))

+ βi
k(Hθi

k
(Xi

k+1,U
i
k+1) − H̄(θi

k))(ri
kΓ(ri

k))

+ βi
kH̄(θi

k)(ri
kΓ(ri

k) − r̄i(θi
k)Γ(r̄i(θi

k))). (12)
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Setting

f i(θ) = H̄(θ)r̄i(θ), (13)

e
i,(1)
k = (Hθi

k
(Xi

k+1,U
i
k+1) − H̄(θi

k))ri
kΓ(ri

k), (14)

e
i,(2)
k = H̄(θi

k)(ri
kΓ(ri

k) − r̄i(θi
k)Γ(r̄i(θi

k))), (15)

e
i,(3)
k = Aii

k θ
i
k +

∑

j 6=i A
ij
k θ

j
tij(k) − θ

i
k, (16)

the actor update can be written as

θi
k+1 = θi

k + e
i,(3)
k

+ βi
ke

i,(1)
k + βi

ke
i,(2)
k + βi

kH̄(θi
k)(r̄i(θi

k)Γ(r̄i(θi
k))). (17)

Now, the update equation above and the error termse
i,(1)
k , and

e
i,(2)
k can be handled exactly as in [1, Section 6]. Specifically,

as in shown in [1, Section 6],f i(θ) approximates∇ᾱ(θ) with
a maximum error that is independent ofλ, and the error terms
e

i,(1)
k , ande

i,(2)
k converge w.p.1. What remains to be shown

is that limk e
i,(3)
k = 0 w.p.1.

To that end, we will use the analysis in [10]. Notice that our
actor update (11) has the same form as Eq. (2.1) in [10], i.e.,
the form of a consensus algorithm perturbed by the gradient
which can be viewed as a “noise” term. In Eq. (2.1) of [10], we
will take the stepsizeγi(n) to be equal to1 and the gradient
si(n) to be equal toβi

kHθi
k
(Xi

k+1,U
i
k+1)(r

i
kΓ(ri

k)). Let yk

be defined as in Eqs. (2.13) and (2.14) of [10]. That is, in
our setting,yk is the value ofθ that all agents would agree
to if at time k they switched to a new actor update iteration
that has only the first two terms of (11), namely, a consensus
algorithm. Define, also,

bk =
∑N

i=1 β
i
k||Hθi

k
(Xi

k+1,U
i
k+1)(r

i
kΓ(ri

k))||. (18)

Following the same reasoning as in [10] (and using Assump-
tion B) one can establish an inequality equivalent to (A.2) in
[10], namely, there exists ad ∈ [0, 1) such that

||yk − θi
k|| ≤ A

∑k
n=1 d

k−nbn, (19)

whereA is some constant. Let now

H̃k = (β1
k||Hθ1

k
(X1

k+1,U
1
k+1)(r

1
kΓ(r1

k))||, . . . ,

βN
k ||HθN

k
(XN

k+1,U
N
k+1)(r

N
k Γ(rN

k ))||).

We have

E[
∑

k(bk)2] = E[
∑

k(e′H̃k)2]

≤ ||e||2
∑

i

∑

k(βi
k)2E[||Hθi

k
(Xi

k+1,U
i
k+1)(r

i
kΓ(ri

k))||2]

≤ NC
∑

i

∑

k(βi
k)2E[||Hθi

k
(Xi

k+1,U
i
k+1)||

2]

≤ NC ′ ∑

i

∑

k(βi
k)2 <∞.

The 2nd inequality above holds for someC > 0 and is
due to Assumption C. For some constantC ′ > 0, the 3rd
inequality above follows from [1, Lemma 4.3] which states
that E[||Hθi

k
(Xi

k+1,U
i
k+1)||

2] is bounded. The finiteness of
E[

∑

k(bk)2] follows from Assumption C(a). We conclude that
bk converges to zero almost surely. The convergence ofbk
establishes (due to (19)) thatyk − θi

k converges to zero for
all i almost surely which in turn implies the convergence of
e

i,(3)
k to zero. This completes the proof as the convergence of

{θi
k} follows from [1, Thm. 6.3].

IV. A MOBILE SENSOR NETWORK COORDINATION

PROBLEM

As an application we next consider a fairly general class of
coordination problems arising in sensor networks with mobile
nodes. Assume a 2-dimensionalmission space, S ⊂ R

2,
in which there is a set ofM target points indexed by
i = 1, . . . ,M whose positions are indicated, at timek, by
mi

k ∈ S . These positions may change over time; we assume
that {mi

k; k = 1, . . . , } is a stationary stochastic process for
eachi. To eachtarget pointi we associate arewardRi

k ∈ R+.
The mission space is to be explored byN mobile sensor

nodes (agents) indexed byj = 1, . . . , N , whose positions at
time k are indicated byxj

k ∈ S . To each nodej we associate
a capacityCj

k ∈ R+. When a node “visits” a target point it
collects a reward which depends on the available reward at
the target point and the capacity of the node. Every visit has
also the effect of depleting a part of the node’s capacity. We
assume that nodes start their exploration of the mission space
from the origin0 ∈ S . Every nodej navigates inS and,
from time to time, returns to the origin which has the effect
of replenishing the node’s capacity to its initial valueCj

0 .
In particular, the dynamics of the sequences{Ri

k} and{Cj
k}

are described as follows. For alli = 1, . . . ,M , (i) Ri
k+1 =

max(Ri
k − Cj

k, 0), if ∃j ∈ 1, . . . , N such thatmi
k = x

j
k, and

(ii) Ri
k+1 = Ri

k + wk, otherwise, where{wk} is a sequence
of i.i.d. random variables. For allj = 1, . . . , N , (i) Cj

k+1 =

max(Cj
k − Ri

k, 0), if ∃i ∈ 1, . . . ,M such thatmi
k = x

j
k, (ii)

Cj
k+1 = Cj

0 , if x
j
k = 0, and(iii) Cj

k+1 = Cj
k + gk, otherwise,

where{gk} is also a sequence of i.i.d. random variables. The
sequence of rewards,Φj

k, collected by each nodej over time
is characterized asΦj

k = min(Ri
k, C

j
k), if ∃i ∈ 1, . . . ,M such

that mi
k = x

j
k, and0 otherwise.

The scenario we are considering is completed by the sensing
capabilities of the nodes. The nodes cansensethe reward
located at thetarget pointsdepending on the “intensity” of the
target and their distance from it. We assume that nodes can
identify from these signals (or obtain otherwise) the number of
targets present in the mission space and can pick up a “signal”
from each target. Specifically, for alli = 1, . . . ,M

si
k(y) =

Ri
k

2πdet(Σi)1/2
e−(y−mi

k)′(Σi)−1(y−mi
k)/2 (20)

is the signal associated with thetarget pointi and measured,
at time k, at the positiony ∈ S of the mission space. In
(20) Σi is a positive definite weight matrix associated with
the target pointi and det(Σi) denotes its determinant.

Given this setup we are interested in a policy that guides the
nodes in the mission space so that we maximize the long-term
average total reward collected given by

lim
k→∞

1

k

∑k
τ=1

∑N
j=1 Φj

τ . (21)

A. A Parametric class of policies

We will first discretize the mission spaceS by superim-
posing a 2-dimensional grid. We assume that the positions of
the target pointsmi

k, for all k and i, are always on this grid
and all nodes move on the grid.
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We are interested in a policy for each node that is based
on its current position, the signals it measures from all target
points, and, potentially, any information it receives fromother
nodes. At timek the jth node can choose a control action
u

j
k ∈ U = {(1, 0), (−1, 0), (0, 0), (0, 1), (0,−1)} to move

from the positionx
j
k to the positionx

j
k+1 = x

j
k + u

j
k. We

adopt the convention that ifxj
k is on the border of the grid then

the control setU contains only the feasible control actions.
We consider the following class of RSPs where each nodej at
time k and positionxj

k selects controlu ∈ U with probability

µθj (u|xj
k) =

exp(ξθj (u,xj
k))

∑

v∈U
exp(ξθj (v,xj

k))
, (22)

where

ξθj (u,x) =
∑M

i=1 θ
j
iC

j
ks

i
k(x + u) + θj

0e
−||x+u||, (23)

and whereθj = (θj
0, . . . , θ

j
M ). The vectorθj parametrizes

node’sj policy. Notice that the structure of the policy favors
control actions that lead to targets emitting stronger signals.
When the node’s capacity or the available rewards are low then
we favor control actions that tend to bring the node closer to
the origin so that it can replenish its capacity. It is important to
notice that the class of RSPs introduced automatically satisfies
Assumptions A(a)-(b)-(c) and for A(d) we can takex∗ = 0.

We remark that (22) represents one potential structure of
the RSP, which we find appealing due to the minimal a priori
information required. If additional information, for instance
the approximate location of the targets points, is available then
it can be easily incorporated. Furthermore, the mission space
can be readily rendered more complex and include inaccessible
regions and obstacles that restrict the agents movement and
communications. To that end, the agents need local “visibility”
to restrict their control actions to only the feasible ones.

B. Numerical Results

The D-AC algorithm runs as follows:
1) Initialization phase:for each nodei, i = 1, . . . , N assign,

randomly, an initial positionXi
0 and the initial values for

the parametersθi
0, r

i
0,Z

i
0.

2) Each nodei chooses the control actionsUi
k according to

theRSP θi
k.

3) Each nodei receives the value of the parametersθj
k, j ∈

Ωi
k = {j = 1, . . . , N | ||Xi

k − X
j
k|| ≤ δk} from all other

nodes within aδk range.
4) Each node updates its own parameters according to the

D-AC algorithm (cf. (7)–(11)) and using the information
received from other nodes.

5) iterate from 2).
The parameterδk can be interpreted as the maximum

communication radius and as we will see it greatly affects the
performance and convergence rate of the algorithm. In one
extreme, whenδk ≪ 1 for all k, there is no communication
between the mobile nodes and every node essentially runs the
single-agent version of the actor-critic method based on just
local observations. In the other extreme, whenδk ≫ 1 for all
k, all nodes communicate and information from any part of
the mission space directly affects decisions in every otherpart.

We consider a20 × 20 grid with threetarget pointsas the
mission spaceS . The target pointsare at (15, 5), (5, 15)
and (15, 15), and their initial rewards are500, 100 and 200,
respectively (see Fig. 1 (Left)). In this example we assume
that rewards do not vary over time (i.e.,wk = 0 for all k)
and only decrease due to the action of the nodes. We have16
nodes in our disposal and we assume thatgk = 0 for all k.

To evaluate the D-AC algorithm, we take as performance
indices theamount of reward collected in a fixed number of
iterationsand thenumber of iterations for all node parameter
vectors to converge. For comparison purposes, we run the
algorithm in two different settings. In one setting, we have
one single team of nodes exploring the mission space with
the only communication constraint imposed by the maximum
communication radiusδk. In the other setting, we divided the
nodes into four different teams of four. The policy structure
of every team has an additional attraction term (cf. (23))
that favors the exploration of one particular area of the
mission space (distinct for each team). Namely, the teams are
configured to specialize in a part of the mission space. In this
multi-team setting the nodes can exchange information only
with nodes of the same team.

Table I reports statistics (mean, variance, minimum, and
maximum) for the number of iterations needed for conver-
gence, in both the single and the multiple-team case. Results
are provided for different values of the parameterδ based on
50 simulation runs for each combination of the parameters.
We useδ = 0.5 as a “proxy” for the centralized version of
the algorithm. In particular, nodes do not communicate and
each one runs the centralized algorithm but they do explore
in parallel the same mission space. In this case, we compute
the number of iterations each node needs to converge to a
θ∗ and average over the number of nodes and the simulation
runs. Forδ > 1 the nodes do communicate and run the D-AC
algorithm; we compute the number of iterations needed for all
nodes to converge to the consensusθ∗ and average over the
50 simulation runs. Table II reports the same statistics (mean,
variance, minimum, and maximum) for the amount of reward
collected in1000 iterations by all nodes, again in the single
and multiple-team scenarios. Results are again averaged over
50 simulation runs for each case.

The results point to an intuitive trade-off between the two
performance indices. Increasing the communication radius
leads to faster convergence as information from each node
reaches faster all other nodes. Note, also, that no communica-
tion leads to faster convergence than limited communication.
However, a larger communication radius decreases the reward
collected. Our understanding is that the nodes converge to
a policy that “averages” the views of all nodes on what
constitutes a good reward-collecting policy. These views are
formed from the exploration of different parts of the state-
control space and the collective view formed leads to sub-
optimal decisions for most of the nodes as they navigate in
the mission space, resulting in a slower reward collection rate.

The results in Tables I and II also indicate that the above
negative effect of a large communication radius can be reduced
or eliminated by the introduction of multiple teams exploring
the mission space. Using multiple teams, and favoring the
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Fig. 1. (Left:) The initial mission space. Each target is indicated by a dot and the contours depict the landscape of the emitted signals, where red colors
indicate a stronger signal. (Right:) The green line taking values on the right vertical axis represents total reward collected by a single team of16 nodes over
time (horizontal axis) whenδk = 5 for all k. The blue line converging to zero plotsmaxi,j ||θ

i
k − θ

j

k
|| over k and takes values in the left vertical axis.

TABLE I
NUMBER OF ITERATIONS NEEDED FOR CONVERGENCE OF THE NODES’

PARAMETER VECTORS.

Single Team Multiple Teams
δ Average Variance Best Worst Average Variance Best Worst

0.5 150.41 292.12 18.23 >1000 155.26 275.87 22.56 >1000
2 595.18 428.72 21.00 >1000 18.34 6.85 11.00 34.00
5 121.90 265.51 11 >1000 11.80 2.74 11.00 21.00
10 11.00 0.00 11.00 11.00 11.60 2.40 11.00 21.00

TABLE II
AMOUNT OF REWARD COLLECTED IN1000 ITERATIONS.

Single Team Multiple Teams
δ Average Variance Best Worst Average Variance Best Worst

0.5 765.04 6.13 777.53 760.03 768.14 9.15 781.15 758.18
2 738.99 115.42 783.30 90.00 786.43 20.98 839.07 761.58
5 732.75 89.45 779.05 384.04 783.26 16.41 821.51 760.48
10 693.33 183.56 772.30 346.34 783.63 22.31 838.78 761.45

exploration of a particular area of the mission space by each
team, it is possible to increase the cohesion (both in the
physical space and in the parameters space) of the nodes
belonging to the same team. This allows teams to “specialize”
and act more effectively in their designated part of the mission
space. In addition, the relatively small number of nodes in
each team leads to faster parameter convergence. Note that
the multi-team scenario with a communication radius in the
5–10 range yields much faster convergence than the centralized
version (δ = 0.5) and dominates in terms of reward collected.

This leads to the observation that there exists an optimal
relationship between the design variables of the algorithm: the
number of agents, the number of teams and the communication
radius. These parameters can be tuned by the designer to fit
the specific problem and application.

We believe that a key advantage of the algorithm we
proposed is its capability to “learn” and adapt to differentenvi-
ronments. The algorithm requires minimal a priori knowledge
(the number of targets) and all reward information is learned
based on the signals received by the nodes. The agents reach
consensus onθ as long as the environment is “stationary”,
and then, reacting to a change in the environment and to the
arrival of new observations, collectively update the valueof

their θ’s.

V. CONCLUSIONS

We developed a distributed algorithm that guarantees con-
sensus and convergence to an optimal parametric control
policy, in the context of a multi-agent coordination prob-
lem. The numerical results we report reveal an interesting
trade-off between performance and the speed of convergence.
Specifically, a large communication radius leads to faster
convergence but leads to suboptimal actions. The effect of a
large communication radius on the reward collection time can
be reduced or eliminated by dividing the agents into multiple
teams that are designated to explore different parts of the state-
control space. The proposed algorithm provides a framework
for distributively solving Markov decision problems by teams
of agents and can have far greater applicability than the
particular application we presented.
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