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Abstract—We introduce and establish the convergence of a updates it based on local information and information nesxi
distributed actor-critic method that orchestrates the coordindion  from a subset of other agents (e.g., the ones within a certain
of multiple agents solving a general class of a Markov decision communication range). This updating follows a consensus-

problem. The method leverages the centralized single-agent actor . - . . . .
critic algorithm of [1] and uses a consensus-like algorithm for like algorithm; such algorithms and their analysis go back

updating agents’ policy parameters. As an application and to t0 [2] and have garnered renewed interest [3], [4]. Under
validate our approach we consider a reward collection problem suitable conditions, we show that all agents reach consensu

as an instance of a multi-agent coordination problem in a and converge to the optimdl. In the algorithm we present,
gﬁg'igﬁﬁfm‘aﬁg‘grggg‘;’;ﬂ?gd subject to dynamical changes g4ents update the@®'s asynchronously
' The D-AC algorithm provides a useful framework for agent
Index Terms—Markov decision processes, actor-critic methods, coordination in dynamic environments. What is particularly
consensus, sensor networks, multl-agent coordination. appealing is that we solve a dynamic problem benefiting
from the parallel exploration of the state-control spacelevh
. INTRODUCTION incurring a relatively small communication overhead (agen
only exchange thei@’s). We note that even though many less
f£omplex schemes have been proposed for agent coordination
g:9., [5]) they tend to be heuristic or solving a static feof
scheme attempts to approximately solve an MDP using an
ADP method and it fills a void since there has not been much
pttention in the ADP literature on distributed approaches.

E consider a setting whereMarkov Decision Problem

(MDP) problem is to be cooperatively solved by
group of agents that can simultaneously explore the stak
control space. Each agent can communicate and exchal
information with agents in its vicinity, thus, having theteo-

tial to modify its own policy on the basis of the informatio ~r - ] .
received. As an application, we consider multi-robot systems exploit

The single-agent version of the problem can be in principlB9 Sensor network capabilities to cope with several taisis,

solved by stochastiBynamic programming (DP)To combat CcOVerage, surveillance, target tracking, foraging, intipdy
Bellman’s curse of dimensionality, in this paper we focusaan known environments subject to dynamical changes. To test th

Approximate Dynamic Programming (ADRpproach:actor- DAC algorithm, we ab_stract and generalize those p_rqblems
critic algorithms [1]. In these algorithms one adopts a ran‘-jeflnlng areward collection problegwhere both thg posmons.
domized class of policies parametrized by a (low-dimereijon and the values of the rewards change with time. In th|s
parameter vectod and optimizes policy performance withProblem a robot swarm explores an unknown and changing
respect tof by using a simulation (or a realization) of the€nvironment looking for_ the target_pomts an_q_thelr relativ
MDP. According to its name, the algorithm interleaves twEEWards. Any robot has limited sensing capabilities andle a

steps: (i) a policy improvement step at which it descendt® communicate locally with other robots. Problems of thig
along the performance gradient with respectétathe actor pre, but adapted to coverage control have also been studied

part), and(ii) a policy evaluation step at which it learns ad" [3]: [6]. We have also considered the coverage problem in

approximate value function from a sample path that uses Rgr related preliminary work in [7]. One of the main features

current policy (the critic part). of our algorithm is its ability to continuously adapt to clgas
Our main contribution is that we develop Ristributed in the environment and the reward structure. Here, we study

Multi-agent Actor-Critic (D-AC) algorithm. Our algorithm a different set of questions and identify an interestingldra

allows us to use multiple agents to simultaneously explop‘;f:flong-range agent c%mmum(r:]atlon (an? co;)frdmatloa)jhe A
the state-control space. Each agent maintains its vand to faster convergence Ut at the cost of performance as the
resulting policy “averages” over large parts of the staiatrol
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Notational Conventions: All vectors are assumed to beTheorem Il.1 (Average Reward Gradient) We have

column vectors. We use lower case boldface letters for vecto _
and upper case boldface letters for matrices. Prime denotes Va(9) = Z 16(x, 1)Qo (X, W)3pg(x, 1), (4)
transpose|| - || the Euclidean normQ the vector/matrix of all X€Z ue¥
zeros, ande the vector of all ones. The elemef#, j) of a where
matrix A is denoted by(A);;. Po(x,u) = Vg ln ug(ulx). (5)
. PRELIMINARIES The actolr-cri.tic algorithm works with a parametrization of
the Q-function in terms of a vector = (rq,...,7,) € R™:
Consider a Markov decision process with finite state and
action spaces? and %, respectively. Let : 2 x % — R Qp(x,u) = Y10 ride(x,u).

be a reward fqnpﬂon. Lefuo, 6 € Rn}. be a set ofandoimlzed For reasons explained in [1], a typical choice for the fezgur
stationary policies RS PSs), pgrametnze_d by. In p_artlc_ular, do.1(x,u) iS to setm — n + 1, dgi(x,u) = tg.(x,u) for

e (u|x) denotes the probability of taking the actiengiven ] =1 - n, and fix dg.ns1(x,u) 'to the constant function
the statex, under theRSP 6. Both {x;} gnd 1(xk; ur) } that is everywhere eqﬁal to one exceptsat= 0 where
generated by amRSP 0, form Markov chains for eveng. Go.ns1(0,u) = 0 for all u. The critic estimates the param-
We make the following assumption which is typical for actor: Ster r on the basis of observations from a sample path of

critic algorithms and is also made in [1]. the Markov process while the actor useso compute the

Assumption A performance gradient and to upddte

(a) Foreveryx € Z,ue€ %, and@ € R", we haveug(u |
x) > 0. [1l. THE DISTRIBUTED ACTOR-CRITIC (D-AC) METHOD

(b) For every(x,u) € 2" x %, the mappingd — g (u | We haveN agents; thgth agent uses aRS P parametrized
x) is twice differentiable. Furthermore, the functiorby 8’ and performs the critic phase of the algorithm on the
Velnpg(u | x) is bounded and has a bounded firshasis of its own observations. For the actor phase, eactt agen
derivative for any fixeck and u. j uses its own estimate d¥a(6’) and any information it

(c) For every & € R™ the Markov chains{x;} and receives from others. In each iteration, every agent peror
{(xx,ux)} are irreducible and aperiodic, with station- a critic update followed by an actor update as described. next
ary probabilitiesmg(x) and ng(x, u) = me(x)ue(ulx),
respectively.

: L A. Critic update
(d) There is a positive integel, state x* € £, and ” .u.p . )
¢ > 0 such that for all 8,,...,08; it follows The critic update for each agepitis the same as in [1]. It

Zk L(P[61] - P[Ok]) s > €0 for aII x € 2, where Uuses aTemporal Difference (TDJearning algorithm ([9]) and

P[0] denotes the transition probability for the MarkoycOMes in two versions, @D(1) and aT'D(A) version which
chain {x;} under the RSH. lead to different convergence results. Specifically, obesi

agentj and Ietak € R the average reward estimate at time
For the setting and policy introduced in Sec. IV-A parts (B), k&, ri € R™ the estimate of parameter vectoat time k, and
are automatically satisfied and in part (d) we can take= 0. zj € R™ the estimate of Sutton’s eligibility trace (see, [1])
We are interested in finding @ that maximizes the averageat timek. Let a|309J € R" be the parameter of the actor for
reward function: the jth agent at tlmek The updates take place at state-action
i pairs visited by a single sample path (potentially generate
wO)= > clxumplxu). @ by a simulation) of the Markov process. LE&X7, U7) be the
state-action pair sampled at timkefrom the jth agent. The
For eachd define a differential reward functiolp : 2" — R, critic update equations for thgth agent are as follows:
as solution of the following Poisson equation:

xEX ueU

01 = o + (X1, Ulyy) — o), (6)
0)+Vo() =3 pofube) |l )+ 3 iyl wVoty)| L =1l +ofl2, %
uev yex
. . . .(2) J i T i g J j
wherep(y|x, u) is the probability that the next stateyisgiven dy, =c(X5,, Up) — ag, + 13 bgs (X415 Uy
hat th rren i an i is taken. n i’ i y1d
that the current state i and actionu is taken.Vy(x) can be — vl gy (X, UL ®)

interpreted as the relative reward of starting at sigtéhat is,
the excess reward we collect on top of the average rewardaifiere in theI'D(1) case

we start atx. Define the@-value function: , 4 ] .
j Zy + i (X110 Ul if Xi,, #x7,

Qo(x,w) = c(x,u) —a(0) + Xy c o Py WVoly). @) L = {¢9j (X)41, Ul ), otherwise,
The following result is from [8] where for the components of ”
Pg(x,u) we write (Yg.1(x,u),...,%0 n(x,u)).

9)

and in theT'D()) case, for0 < A < 1,
Z?c+1 = )‘Z‘/i + d’ei (Xi—&-l’ U17~c+1) (10)
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Assumption B
t (&) There is a directed path i¥ from every node to every
other node.

In the aboveyi is a positive stepsize parameter, axtl is
a special state that the Markov process visits infinitel\gmof
(For the application we consider in Section IV-A we can tak?b h h thatAi > A1

= (0,0).) We can think of the critic update as using TD ) there exists a positive constantsuch that 7h

Iearnmg to “learn”r (and the average reward) for a given _ &k and A}l > 1, Vi, andk € . Y

6. If we denote by, and ¢, the vectors inglZllz|  (c) The time between consecutive transmissiong;ofrom
(Yo (x, w); ¥x,u) and (¢ (x, u) Vx,u), respectively, it agent; to i is bounded by som8 > 0, V(j,i) € &.
can be seen that the critic computes an approximate proqectl(d) Communication delays are bounded by saffie> 0.

of @ onto the subspace spanned by thg,, [ = 1,...,m.
Given our selection of thep s, this essentially computes
a projection of@ onto the subspace spanned by thg ;,

I = 1,...,n, which according to Thm. Il.1 suffices for
computing an approximate gradient @f6).

Intuitively, this assumption says that) information can flow
between any two agents, even indirectly through other agent
via update (11);(b) in the update (11) the weights of the
(local and directly received’s are bounded away from zero;
(c), (d) for every agent there is a finite delay between two
consecutive receptions of a messaifefrom every agentj

B. Actor update directly communicating with.

The actor update is a gradient descent method which usge
the above estimate d¥a(@) provided by the critic. Agents Assumptlon c R .
communicate with each other and exchange their parameF8 aII agents{ the stepsizesy, 5 and the functionl'(:)
vectorsej Naturally, some of these messages may not be r%opearlng in (11) satisfy
ceived by agents who happen to be outside the communicati&® Vi 3}, are deterministic, nonincreasing, and for sorhe

range of the transmitting agent. We denote ¥y the set of 0 satisfy

times that agent receives a message from aggntwWe will T 8o, Y.(81)?

assume thaf” is either empty or infinite, that is, either ) k 7k s kA7 i
never sends messagesitor, if it does, it gets close tooften Do =00 D p(n)® <00, Dlu(Be/7k)

enough for its message to be received:bguppose receives

s - b) For some positive constants, < Cs:
a message sent froghat time k. Then, we lett* (k) be the (b) P ! 2

time this message was sent, namelyecelvesew . The [|Ir]|T(r) € [Cy, Cs], vr € R™,
actor update iteration is as follows: Cyllr —s||
IP@) =TON < e s €R™
+ ([l + [[s]]

k1 = A0y + Zj;éz A} Oiu(k)
+ ﬁ};l‘(r};)r}:%i (X1, Upe)¥; (Xjg1, Uisy),  (11) Theorem 1111 (Distributed Actor-Critic) ~ Under
Assumptions A-C the sequencg®,} generated by each
whereT'(-) is a scalar that controls the stepsiZgon the basis agent i according to the distributed actor-critic algorithm
of the value ofr,C Furthermore A}/ = diag(ay/,, .. ak,n) satisfy:
A) >0, 23 1akl =1,foralls,l,k, andAl = 0if k ¢ T™ (a) in the TD(1) case
for all i # j. Notice that we seA}’ = 0 if agenti does not o ; _
receive the actor parameter from aggnbtherwise it receives h,gggf IVa(6)]] = 0, Vi w.p.1;
such information and combines it with its own actor paramete

as in (11). Equation (11) differs from the centralized sigl b) in the TD()) case, for eaclr > 0, there exists\ such

agent version of the actor-critic algorithm in that it uses a that o o .
convex combination of availabl®’ to updated’. Specifically, liminf [[Va(8})[] <e, Vi, wp.l
the centralized algorithm is a particular case of (11) where . . ]
AP =0if i#jandAl =T for all i. Proof: Consider agent and as in [1, Sec. 6] define
HGi (X> u) = ¢0i (Xv u)d)ei (X7 u)7
C. Convergence T/t !
J H(O) = 3, o (%, W)thgr (X, 0) g (x, ).

To show the convergence of the D-AC algorithm we rely on
the convergence proof of the centralized actor-critic sthm et ©(6") be the limit of the critic parametar; if the policy
in [1] and the work on distributed stochastic gradient metho parametep’ was held fixed. The critic part of the algorithm is
in [10]. The following assumption on information exchangédentical with the single agent version in [1], hence thisiti
between agents will be crucial in establishing that the tgye®Xists. The actor update can be written as follows:
reach consensus on thef’s. It is a common assumption L —ATOL Y Alg
for consensus algorithms [4]. To state the assumption, we k1= J#i £ (k)

introduce the directed graply = (A4,&) with nodes + BLH(6),) (T (6),)T(¥°(05)))

A ={1,...,N} corresponding to the set of agents. An arc 4 B (Ha (Xi ., U H(o i T (pi

(4,1) € & if and only if T% is infinite. The grapl¥ represents Bf(_ 0’;( lj“’ ) i) — H( ’fz)( W)
the communication pattern between agents. + BLH(6})(ri T (r)) — T (0,)T(F'(6}))).  (12)
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Setting IV. A MOBILE SENSOR NETWORK COORDINATION

£'(6) = H(6)r'(6), (13) o PROBHEN |
i(1) ; ; _ As an application we next consider a fairly general class of
€ = (Hf”i-, (K41, Upr) — H(G3))ri I (ri), (14) coordination problems arising in sensor networks with rtebi
ez»@) = H(0L)(ril(rh) — v (0L)T(F'(6L))), (15) nodes. Assume a 2-dimensionalission space.” C R2,
in which there is a set ofM target pointsindexed by

(3 i1 gt j nJ i
ekf( )= Ag O+ Z#vﬁ Akjei”’(k) Tk (16) i = 1,...,M whose positions are indicated, at timke by
the actor update can be written as mi € .. These positions may change over time; we assume
. . i (3) that{m’; k =1,...,} is a stationary stochastic process for
ki1 =0 +e eachi. To eachtarget pointi we associate eeward R;, € R.
+ﬂ;ie}i’(1) +/31ief;(2) + BLH(0L)(F(0L)T(F (). (17) The mission space is to be explored b&mobilelgensor
nodes (agents) indexed hy= 1,..., N, whose positions at

Now, the update equation above and the error teerb%), and time k are indicated by; € .. To each nodg we associate
eZ,’(Q) can be handled exactly as in [1, Section 6]. Specificallg, capacityC,Z € Ry. When a node “visits” a target point it
as in shown in [1, Section 6f' (@) approximatesva(0) with  collects a reward which depends on the available reward at
a maximum error that is independentafand the error terms the target point and the capacity of the node. Every visit has
eZ’(l), and e;’@) converge w.p.1. What remains to be showalso the effect of depleting a part of the node’s capacity. We
is thatlimy,, e;»(?’) =0wp.l. assume that nodes start their exploration of the missionespa
To that end, we will use the analysis in [10]. Notice that oufom the origin0 € .. Every node;j navigates in”” and,
actor update (11) has the same form as Eq. (2.1) in [10], i.&0m time to time, returns to the origin which has the effect
the form of a consensus algorithm perturbed by the gradie®itreplenishing the node’s capacity to its initial valGg.
which can be viewed as a “noise” term. In Eq. (2.1) of [10], we In particular, the dynamics of the sequen¢é¥, } and{C}}
will take the stepsize/(n) to be equal tol and the gradient are described as follows. For all=1,..., M, (i) R;,, =
s'(n) to be equal ta3; He; (X] ,;, U, ) (riT(r})). Let y max(Rj, — C/,0), if 3j € 1,..., N such thatmj, = x;, and
be defined as in Egs. (2.13) and (2.14) of [10]. That is, i) R}, = R}, + ws, otherwise, whergwy} is a sequence
our setting,y. is the value off that all agents would agreeof i.i.d. random variables. For all = 1,..., N, (i) C,Z+1 =
to if at time k& they switched to a new actor update iteratiormax(ci - ’;70), if 3i €1,...,M such thatmfc = Xi’ (ii)
that has only t_he first two terms of (11), namely, a consensg%H =}, if x], = 0, and(iii) Ci+1 = O} + gy, otherwise,
algorithm. Define, also, where{g;} is also a sequence of i.i.d. random variables. The
_ N g (X i i (i sequence of reward®’, collected by each nodg over time
bk_ 2i=1 il Mo, (Xk_Jr“UH_l)(rkF(rk))H. ) (18) is characterized a@{c = min(Ri,Cﬁ), if 35 €1,...,M such
Eollowmg the same reasoning as in _[10] (and using Assum—at mi = Xi and0 otherwise.
tion B) one can establish an inequality equivalent to (Ar2) i The scenario we are considering is completed by the sensing
[10], namely, there exists d < [0,1) such that capabilities of the nodes. The nodes csensethe reward
lyr — 60| < A Zi:l d*—"b,,, (19) located at thea_rgeF pointsdepending on the “intensity” of the
target and their distance from it. We assume that nodes can
identify from these signals (or obtain otherwise) the nundie
H, — (ﬁéHHe}c (X}Hp Uzlc+1)(r;1gf(r;1€))|\, . targets present in the mission space and can pick up a “8ignal

N N v New N from each target. Specifically, for all=1,..., M
Br [Hay (X1, Upr) (v T(rg)I])-

where A is some constant. Let now

i Réc —(y—m}) (=) ! (y—m})/2
We have sp(y) = We (y—m})' ()7 (y—my)/ (20)
E[}",(bx)%] = B[, (e'Hy)?] is the signal associated with tharget pointi and measured,

< llel® Y, 30 (B2 El[Hy; (Xi,,, Uy, ) (riD(ry))|[?]  at ime k, at the positiony € .7 of the mission spaceln

; i~ ; 20) X* is a positive definite weight matrix associated with
<N . 2E[||Hy: (X2 ’ 2 ( . ; . .
- C/Zl Zk(ﬁ’“_) , [IHe; (X1 Uk )] the target pointi and detX") denotes its determinant.

SNC Y2, 50 (B)7 < oo Given this setup we are interested in a policy that guides the
The 2nd inequality above holds for som@ > 0 and is nodes in the mission space so that we maximize the long-term
due to Assumption C. For some constait > 0, the 3rd average total reward collected given by
inequality above follows from [1, Lemma 4.3] which states N N &
that E[||H; (X, UL,,)|[?] is bounded. The finiteness of Jim 2t 25 P (21)
E[>", (b)?] follows from Assumption C(a). We conclude that _ o
by converges to zero almost surely. The convergencé,of A. A Parametric class of policies
establishes (due to (19)) thst, — 8, converges to zero for  We will first discretize the mission spac# by superim-
all 7 almost surely which in turn implies the convergence gfosing a 2-dimensional grid. We assume that the positions of
e;"(_j) to zero. This completes the proof as the convergencetbk target pointsni, for all £ andi, are always on this grid
{0;,} follows from [1, Thm. 6.3]. m and all nodes move on the grid.
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We are interested in a policy for each node that is basedWe consider &0 x 20 grid with threetarget pointsas the
on its current position, the signals it measures from afjeéar mission space?. The target pointsare at(15,5), (5,15)
points, and, potentially, any information it receives frother and (15,15), and their initial rewards ar600, 100 and 200,
nodes. At timek the jth node can choose a control actiomespectively (see Fig. 1 (Left)). In this example we assume
u, € % = {(1,0),(-1,0),(0,0),(0,1),(0,—1)} to move that rewards do not vary over time (i.ay, = 0 for all k)
from the positionx], to the positionx]_,, = xj, + uj. We and only decrease due to the action of the nodes. We Have
adopt the convention thati), is on the border of the grid then nodes in our disposal and we assume #at= 0 for all k.
the control setZ contains only the feasible control actions. To evaluate the D-AC algorithm, we take as performance
We consider the following class of RSPs where each njoake indices theamount of reward collected in a fixed number of
time k and positionxi selects control € % with probability iterationsand thenumber of iterations for all node parameter

vectors to convergeFor comparison purposes, we run the

g (ulx]) = exp (i (1, %3)) __ (22) algorithm in two different settings. In one setting, we have
> vea exp(&pi (v, x7)) one single team of nodes exploring the mission space with
where the only communication constraint imposed by the maximum
Mo ) communication radiug,. In the other setting, we divided the
Eoi(u,x) = Y i, 01Chsh(x +u) + Be!PFull - (23)  nodes into four different teams of four. The policy struetur
and whereg? — (9{;,...,9?\4). The vector®’ parametrizes of every team has an additional attraction term (cf. (23))

dhat favors the exploration of one particular area of the

node’sj policy. Notice that the structure of the policy favors' <" N
control actions that lead to targets emitting stronger aiign MiSSion space (distinct for each team). Namely, the teams ar
nfigured to specialize in a part of the mission space. & thi

When the node’s capacity or the available rewards are low theA" , X X
we favor control actions that tend to bring the node closer {Hultl—team setting the nodes can exchange information only
the origin so that it can replenish its capacity. It is impoitto With nodes of the same team. , N
notice that the class of RSPs introduced automaticallgfeesi  '2ple | reports statistics (mean, variance, minimum, and
Assumptions A(a)-(b)-(c) and for A(d) we can také — 0. maX|mu_m) for the n_umber of |terat|on_s needed for conver-
We remark that (22) represents one potential structure $§"C€: In both the single and the multiple-team case. Result
the RSP, which we find appealing due to the minimal a prioff€ Provided for different values of the paramefepased on
information required. If additional information, for iresice 50 simulation runs fof‘ each“ combination Of_ the parameters.
the approximate location of the targets points, is avadiabhén We use(S_: 05asa _proxy for the centralized Vversion of
it can be easily incorporated. Furthermore, the missior«:espafhe algorithm. In partlcular_, nodes d_o not communicate and
can be readily rendered more complex and include inacdessip2ch one runs the centralized algorithm but they do explore

regions and obstacles that restrict the agents movement Jh&arallel the same mission space. In this case, we compute
communications. To that end, the agents need local “vissibil the number of iterations each node needs to converge tg a
to restrict their control actions to only the feasible ones. 6" and average over the number of nodes and the simulation

runs. Foré > 1 the nodes do communicate and run the D-AC
algorithm; we compute the number of iterations needed for al

B. Numerical Results
nodes to converge to the consenglisand average over the

The D-AC algorithm runs as follows: 50 simulation runs. Table |l reports the same statistics (mean
1) Initialization phasefor each node, i = 1,..., N assign, variance, minimum, and maximum) for the amount of reward
randomly, an initial positiorX; and the initial values for collected in1000 iterations by all nodes, again in the single
the parameter§;, rj, Zj. ‘ and multiple-team scenarios. Results are again averagad ov
2) Each node chooses the control actioig;, according to 50 simulation runs for each case.
the RSP 0. , The results point to an intuitive trade-off between the two
3) Each node receives the value of the parametéis j € performance indices. Increasing the communication radius
Q. ={j=1,...,N| [|X] — X]|| <&} from all other |eads to faster convergence as information from each node
nodes within & range. reaches faster all other nodes. Note, also, that no communic

4) Each node updates its own parameters according to tigh leads to faster convergence than limited communioatio
D-AC algorithm (cf. (7)—(11)) and using the informationHowever, a larger communication radius decreases the dewar
received from other nodes. collected. Our understanding is that the nodes converge to

5) iterate from 2). a policy that“averages” the views of all nodes on what

The parameterd, can be interpreted as the maximunctonstitutes a good reward-collecting policy. These vieves a
communication radius and as we will see it greatly affeces thiormed from the exploration of different parts of the state-
performance and convergence rate of the algorithm. In onentrol space and the collective view formed leads to sub-
extreme, wherny, < 1 for all £, there is no communication optimal decisions for most of the nodes as they navigate in
between the mobile nodes and every node essentially runs tihe mission space, resulting in a slower reward collectain.r
single-agent version of the actor-critic method based @t ju The results in Tables | and Il also indicate that the above
local observations. In the other extreme, witern> 1 for all negative effect of a large communication radius can be rediuc
k, all nodes communicate and information from any part ar eliminated by the introduction of multiple teams exphayi
the mission space directly affects decisions in every gblaet. the mission space. Using multiple teams, and favoring the
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Fig. 1. (Left:) The initial mission space. Each target is aaded by a dot and the contours depict the landscape of théednsignals, where red colors
indicate a stronger signal. (Right:) The green line takiatpes on the right vertical axis represents total rewartectéd by a single team df6 nodes over
time (horizontal axis) whei;, = 5 for all k. The blue line converging to zero plotsax; ; ||}, — 67,|| over k and takes values in the left vertical axis.

TABLE |
NUMBER OF ITERATIONS NEEDED FOR CONVERGENCE OF THE NODES
PARAMETER VECTORS

their 0's.

V. CONCLUSIONS

We developed a distributed algorithm that guarantees con-

Single Team Multiple Teams H :
0 | Average Variance Best  Wors{ Average Variance Best  Worst seqsus_and convergence to an_ Optlmal parf_;lme_trlc control
05| 15041 29212 18.23 >1000 | 15526 27587 2256 >1000  policy, in the context of a multi-agent coordination prob-
2 595.18 428.72 21.00 >1000 18.34 6.85 11.00 34.00 . . .
= | 12100 2essi 11 2i000| 1180 274 1100 2100 lem. The numerical results we report reveal an interesting
10 | 11.00 000 1100 1100 11.60 240 1100 21.00  trade-off between performance and the speed of convergence
Specifically, a large communication radius leads to faster
TABLE Il convergence but leads to suboptimal actions. The effect of a
AMOUNT OF REWARD COLLECTED IN1000 ITERATIONS. large communication radius on the reward collection time ca
be reduced or eliminated by dividing the agents into mutipl
: _ teams that are designated to explore different parts ofttie-s
Single Team Multiple Teams . .
5 | Average Variance  Best  Wors{ Average Varance  Best  Worst CONtrol space. The proposed algorlthm prowdes a framework
0.5 | 765.04 6.13 777.53 760.08 768.14 9.15 781.15 758.18 H H H : e
5| 73399 11542 78330 90.00 78643 098  s3oor 7erss for distributively solving Markov decision pro_blemfs by tea
5 | 73275 89.45  779.05 384.04 783.26 16.41 82151 76048 Qf agents and can have far greater app||cab|||ty than the
10 693.33 183.56 772.30 346.34 783.63 22.31 838.78 761.45

particular application we presented.
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