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An admission control approach that can provide per class packet loss and delay Quality of Service
guarantees is developed. The proposed approach is based on large deviations performance analysis
results.

Abstract

We consider the problem of quality-of-service (QoS) provisioning in modern high-speed, multimedia, communication networks. We
quantify QoS by the probabilities of loss and excessive delay of an arbitrary packet, and introduce the model of a multiclass node
(switch) which provides network access to users that may belong to multiple service classes. We treat such a node as a stochastic system
which we analyze and control. In particular, we develop an analytical approach to estimate both the delay and the bu!er over#ow
probability per service class, based on ideas from large deviations and optimal control. We exploit these performance analysis results by
devising a call admission control algorithm which can provide per class QoS guarantees. We compare the proposed approach to
alternative worst-case and e!ective bandwidth-based schemes and argue that it leads to increased e$ciency. Finally, we discuss
extensions to the network case in order to provide end-to-end QoS guarantees. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Quality-of-service (QoS) provisioning in today's com-
munication networks is an increasingly important issue
as real-time applications such as internet telephony, tele-
conferencing, web access of multimedia information, and
interactive TV, become more heavily used. Technology
to accommodate these applications exists (e.g., the asyn-
chronous transfer mode (ATM) protocol, the Internet
enhanced with RSVP mechanisms discussed in Zhang,
Deering, Estrin, Shenker & Zappala, 1993); the challenge
is how to manage the network resources (bandwidth) to
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provide several QoS grades that such a diverse set of
applications requires.

To achieve this goal several approaches have been
proposed. One class of mechanisms is based on worst-
case analysis and provides deterministic QoS guarantees
(Cruz, 1991a,b; Parekh & Gallager, 1993, 1994; Chang,
1994), that is, ensuring no packet losses and no large
delays with certainty. Although such an approach is
useful when no statistical description of the o!ered
tra$c is available, it can lead to substantial underutiliz-
ation of the network resources. To realize statistical
multiplexing gains the so called ewective bandwidth mech-
anism has been proposed (Gibbens & Hunt, 1991;
GueH rin, Ahmadi & Naghshineh, 1991; Hui, 1988;
Kelly, 1991, 1996). Brie#y, e!ective bandwidth is a
number between the peak and average rate of a con-
nection such that when connections are allocated their
e!ective bandwidth in an appropriately dimensioned
bu!er, the bu!er over#ow probability stays below a given
small level (say on the order of 10~6). Real-time applica-
tions can tolerate such small frequencies of congestion
phenomena.
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The e!ective bandwidth is a single class scheme: all
connections are multiplexed into one bu!er and, thus,
they face the same QoS. Our objective in this paper is to
provide class-speci"c QoS guarantees. We quantify QoS
by the probability of excessive delays and the loss prob-
ability. It is desirable to keep them at very small levels
(e.g., on the order of 10~6). Determining such probabilit-
ies for non-trivial tra$c models is a particularly hard
problem, thus, it is natural to focus on asymptotic re-
gimes and determine their exponential decay rate. To this
end, large deviations theory (see Bucklew, 1990; Dembo
& Zeitouni, 1993; Shwartz & Weiss, 1995) will be our
main analytical tool.

We will introduce the model of a multiclass node
(switch) where users belonging to multiple service classes
request to be connected. A service class is characterized
by the statistical properties of the incoming tra$c (distri-
bution of the stochastic process modeling the tra$c) and
by the QoS requirements. Di!erent types of tra$c (i.e.,
voice, video, data, etc.) have di!erent statistical pro-
perties, and in addition they may have distinct QoS
requirements (e.g., video may need more stringent QoS
requirements than voice), thus, they belong to di!erent
service classes. Moreover, sessions carrying the same type
of tra$c may belong to di!erent service classes if they
have di!erent QoS requirements (e.g., we can consider
a situation where we want to support both high- and low-
quality video).

We formulate the large deviations problem of obtain-
ing the tails of loss and delay probabilities for each class
as a deterministic optimal control problem which we
explicitly solve. We obtain `fulla (i.e., asymptotically
tight) large deviations results for the special case of two
service classes. The more general multiclass case appears
to be much harder; we provide approximations and evid-
ence that they are fairly accurate. We exploit the perfor-
mance analysis results by devising an admission control
procedure that provides class-speci"c QoS guarantees.
The admission controller tries to fully utilize the avail-
able bandwidth by investigating di!erent bandwidth al-
location policies (within a certain parametric class of
policies) among service classes and denies admission only
when there is no feasible allocation that guarantees QoS
to all connected calls. We compare our approach to
alternative worst-case and e!ective bandwidth schemes
and show that it leads to more e$cient use of the band-
width resources.

Large deviations techniques have recently been ap-
plied to a variety of problems in telecommunications (see
the survey paper by Weiss, 1995). The problem of estima-
ting tail probabilities of rare events in a single-class queue
has received extensive attention in the literature (Cour-
coubetis & Weber, 1995a; de Veciana & Walrand, 1995;
Elwalid & Mitra, 1993; Gibbens & Hunt, 1991; Glynn
& Whitt, 1994; Hui, 1988; Kelly, 1991; Kesidis, Walrand
& Chang, 1993; Tse, Gallager & Tsitsiklis, 1995). The

extension of these ideas to multiclass queues and net-
works appears to be a rather challenging problem and
a very active area of research. In a multiclass setting,
although some performance analysis results which esti-
mate or approximate the asymptotic decay rates of bu!er
over#ow probabilities have been obtained (Bertsimas,
Paschalidis & Tsitsiklis, 1997, 1998a; Courcoubetis &
Weber, 1995b; de Veciana & Kesidis, 1995; O'Connell,
1995; Zhang, 1997; Zhang, Towsley & Kurose, 1995), the
implications to delay have not been considered and the
applications to admission control not thoroughly investi-
gated. Zhang, Liu, Kurose and Towsley (1997) consider
the multiclass case using approximate performance anal-
ysis results which leaves room for substantial increase in
e$ciency.

Among the main contributions of the work in this
paper we consider:

f The multiclass character of the analytical results and
the admission control algorithm. As we demonstrate,
the advantage is that each service class is allocated the
capacity required by its QoS speci"cations which in-
clude both a measure of loss and one of delay. It
allows, for instance, class 1 tra$c to su!er less delay
with a larger loss probability than class 2 tra$c, some-
thing that can not be achieved with neither single class
nor priority schemes (e.g., as in Elwalid & Mitra,
1995).

f The optimal control formulation of the calculation of
the congestion probabilities. An advantage of this ap-
proach is that the optimal control solution also pro-
vides a complete characterization of the most likely
way that congestion builds up, allowing us to acquire
an intuitive understanding of the chain of events that
lead to congestion.

f The handling of stochastic service capacities (in
contrast to most of the work in the literature which
focuses on deterministic capacity). As we elaborate in
Section 3, this allows us to handle more sophisticated
scheduling disciplines for allocating bandwidth among
service classes.

f The interplay between admission control and schedul-
ing. As it will become evident in Section 7, the pro-
posed admission controller provides the input to the
bandwidth allocation scheduler, which adjusts its
parameters to accommodate the current load.

On the organization of this paper, we start in Section 2
with some preliminaries on large deviations. In Section 3
we introduce our model and formally de"ne the problem.
In Sections 4 and 5 we analytically obtain asymptotics
for the loss and delay probabilities in the two-class case.
In Section 6 we develop extensions to the multiclass case
and re"nements of the large deviations asymptotics. In
Section 7 we use these results to develop the call admis-
sion control algorithm; we compare it with alternative
schemes via illustrative examples. In Section 8 we discuss
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extensions to the network case and indicate how these
results can be applied to provide end-to-end QoS guaran-
tees. Finally, in Section 9, we include some concluding
remarks.

2. Preliminaries

In the form of background on large deviations and to
establish some of our notation, we "rst review some basic
results. Consider a sequence of i.i.d. random variables
X

i
, i51, with mean E[X

1
]"XM . The strong law of large

numbers asserts that +n
i/1

X
i
/n converges to XM , as

nPR, with probability one (w.p.1). Thus, for large n the
event +n

i/1
X

i
5na, where a'XM , (or +n

i/1
X

i
4na, for

a(XM ) is a rare event. In particular, its probability
behaves as e~nr(a), as nPR, where the function r( ) )
determines the rate at which the probability of this
event is diminishing. CrameH r's (1938) theorem determines
r( ) ), and is considered the "rst large deviations
statement.

Consider next a sequence MS
1
,S

2
,2N of random vari-

ables, with values in R and de"ne

"
n
(h)O

1

n
log E[ehSn].

For the applications that we have in mind, S
n
is a par-

tial sum process. Namely, S
n
"+n

i/1
X

i
, where X

i
, i51,

are identically distributed, possibly dependent random
variables. We will be making the following assumption.

Assumption A.
(1) The limit

"(h)O lim
n?=

"
n
(h)" lim

n?=

1

n
logE[ehSn],

exists for all h, where $R are allowed both as
elements of the sequence "

n
(h) and as limit points.

(2) The origin is in the interior of the domain
D"OMh D "(h)(RN of "(h).

(3) "(h) is di!erentiable in the interior of D" and the
derivative tends to in"nity as h approaches the
boundary of D".

(4) "(h) is lower semicontinuous, i.e., lim infhn?h"(h
n
)5

"(h), for all h.

Let us de"ne

"H(a)Osup
h

(ha!"(h)) , (1)

which is the Legendre transform of "( ) ). "( ) ) and "H( ) )
are convex duals (see Rockafellar, 1970), namely, along
with (1), it also holds

"(h)"sup
a

(ha!"H(a)). (2)

The function "H( ) ) is convex and lower semicontinuous
(see Dembo & Zeitouni, 1993).

GaK rtner (1977) and Ellis (1984) have extended
CrameH r's theorem to cover autocorrelated processes. In
particular, under Assumption A, the GaK rtner-Ellis
Theorem (see Bucklew, 1990; Dembo & Zeitouni, 1993)
establishes that MS

n
N satis"es a large deviations principle

(LDP) with rate function "H( ) ). More speci"cally, this
theorem intuitively asserts that for large enough n and for
small e'0,

P[S
n
3(na!ne , na#ne)]&e~n"H(a).

A stronger concept than the LDP for the partial sum
random variable S

n
3R, is the LDP for the partial sum

process (to be referred as Sample path LDP)

S
n
(t)"

1

n

xnty
+
i/1

X
i
, t3[0,1].

In a key paper Dembo & Zajic (1995) under certain mild
mixing conditions on the stationary sequence MX

i
; i51N,

establish an LDP for the process S
n
( ) ) in D[0,1] (right

continuous functions with left limits) equipped with the
supremum norm topology. In the spirit of the sample
path LDP, we will be assuming the following.

Assumption B. For all m3N, for every e
1
, e

2
'0, and for

every scalars a
0
,2, a

m~1
, there exists M'0 such that

for all n5M and all k
0
,2, k

m
with 1"k

0
4k

1
42

4k
m
"n,

e~(ne2`+ m~1
i/0 (ki`1~ki)"H(ai))

4P[DS
ki`1

!S
ki
!(k

i`1
!k

i
)a

i
D4e

1
n , i"0,2 ,m!1].

(3)

A detailed discussion of this Assumption, and the tech-
nical conditions under which it is satis"ed can be found
in Dembo and Zajic (1995). Intuitively, Assumption
B deals with the probability of sample paths that are
constrained to be within a tube around a `polygonala
path made up with linear segments of slopes a

0
,2 , a

m~1
.

We will also be making the following assumption,
which can be viewed as the `convex dual analoga of
Assumption B.

Assumption C. For all m3N there exists M'0
and a function !( ) ) with 04!(y)(R, for all y'0,
such that for all n5M and all k

0
,2, k

m
with

1"k
0
4k

1
424k

m
"n,

E[eh >Z]4expG
m
+
j/1

[(k
j
!k

j~1
)"(h

j
)#!(h

j
)]H , (4)

where h"(h
1
,2,h

m
) and Z"(S

k0
,S

k2
!S

k1
,2,

S
km
!S

km~1
).

In Chang (1995) a uniform bounding condition is given
under which Assumptions B and C are satis"ed. It is
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veri"ed that the set of processes satisfying these assump-
tions is large enough to include renewal, Markov-
modulated, and stationary processes with mild mixing
conditions. Such processes can model `burstinessa and
are commonly used in modeling the input tra$c to com-
munication networks.

On a notational remark, in the rest of the paper we will
be denoting by "

X
( ) ) and "H

X
( ) ) the limiting log-moment

generating function and the large deviations rate func-
tion, respectively, of the process X. We will also be
denoting by SX

i , j
O+ j

k/i
X

k
, i4j, the partial sums of the

random sequence MX
i
; i3ZN.

3. The multiclass model and the GPS policy

Consider the architecture of Fig. 1 which accommo-
dates M service classes. Calls declare their service class
and request to be connected to the system. We bundle
together calls of the same service class, storing them in
the same bu!er, which allows us to treat them identically.
The QoS they will receive depends on the bu!er size and
the amount of bandwidth allocated to the bu!er (which is
a function of the employed scheduling policy).

We adopt a discrete-time model where time is divided
into time slots of equal length and the state of the system
is observed at the beginning of each time slot. We let AI j

i
,

where i is in the set of integers Z, denote the number of
bits (or packets) generated by a single class j call
( j"1,2 ,M) during time slot i. In fact, we do not need
to distinguish between calls of the same class since we will
use the same stochastic model for each of them. That is,
we let N

j
denote the number of admitted class j calls, and

Aj
i
the aggregate number of bits that enters bu!er Qj. We

denote by ;
j
the size of bu!er Qj. All bu!ers share the

same communication link which can accommodate
B
i
bits during the time slot i. We assume that the stochas-

tic processes MAj
i
; i3ZN for j"1,2, M, and MB

i
; i3ZN

Fig. 1. A node with support for multiple service classes.

are stationary and mutually independent. However, we
allow dependencies between the number of bits at di!er-
ent time slots in each process, which allows us to model
bursty tra$c.

We denote by ¸j
i
the queue length at the beginning of

time slot i (without counting arrivals during this time
slot) in bu!er Qj, j"1,2, M. Let Dj

i
be the correspond-

ing delay (the time an arbitrary class j bit spends in the
bu!er). Notice that both queue lengths and delays de-
pend on the corresponding bu!er size. As a general rule
we will suppress this dependence in the notation, except
in cases where we explicitly denote otherwise. We assume
that the server (communication link) allocates its capac-
ity between queues Qj according to a work-conserving
policy (i.e., the server never stays idle when there is work
in the system). For stability purposes we assume that for
all i

E[B
i
]'

M
+
j/1

E[Aj
i
]. (5)

We further assume that the arrival and service processes
satisfy a LDP (Assumption A), as well as Assumptions
B and C.

We employ the generalized processor sharing (GPS)
policy which was proposed in Demers, Keshav and
Shenker (1990) and further explored in Parekh and
Gallager (1993, 1994). It possesses certain fairness prop-
erties which are desirable in the multimedia setting we
are considering. According to this policy, the server allo-
cates a fraction /

j
3[0,1] of its capacity to queue Qj,

where of course +M
j/1

/
j
"1. The policy is de"ned to be

work-conserving, which implies that if one or more of the
queues do not fully use the fraction of the capacity
allocated to them, the excess is distributed to the remain-
ing queues.

We are interested in devising an admission control
algorithm which guarantees a desirable level of QoS. Let
Dj

.!9
be the desirable maximum allowed delay for class j,

and let d
j
be scalars such that for all j"1,2, M

P[¸j
Uj
5;

j
](d

j
, (6)

P[Dj
Uj
5Dj

.!9
](d

j
, (7)

where the subscript;
j
explicitly denotes the dependence

of queue lengths and delays on the bu!er size. We will
refer to Dj

.!9
and d

j
as QoS parameters, since they deter-

mine how well a particular class is treated.
To achieve this goal we will "rst estimate these conges-

tion probabilities and then use the performance analysis
results to develop the admission control algorithm. For
analytical convenience, we will be approximating the loss
probability in (6) with the level crossing probability
P[¸j5;

j
] in an in"nite bu!er system, where ¸j denotes

the corresponding queue length in that system. Kelly
(1996) establishes that these two probabilities have the
same asymptotic decay rate (same exponent). Similarly,
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we upper bound the delay probability in (7) with the one
in the in"nite bu!er system.

Before we proceed with this agenda we make a short
note on the usefulness of allowing the service process
MB

i
; i3ZN to be an arbitrary and autocorrelated stochas-

tic process. This has to be contrasted with most of the
work in the literature that assumes a deterministic service
capacity. Consider for example, the case where a deter-
ministic server, with capacity c bits per time slot, accom-
modates some other high priority tra$c (in addition to
the tra$c generated by the M service classes). Let
MH

i
; i3ZN denote the stochastic process characterizing

this high priority tra$c. Assuming that c'H
i
w.p.1., we

conclude that the capacity remaining for the M service
classes Mc!H

i
; i3ZN is also stochastic. Thus, the

stochasticity of the service process allows the treatment
of more complicated, than the GPS, service disciplines.

4. Two-class case: over6ow probabilities

As we outlined in the Introduction, our main analyti-
cal results are for two-class systems (M"2). Results for
the over#ow probabilities in this case were obtained in
Bertsimas et al. (1997) using the approach introduced in
Bertsimas et al. (1998a); we will just restate them here for
completeness. We will later present extensions and re"ne-
ments in the general multiclass case. The next theorem
summarizes the two-class over#ow result and is from
Bertsimas et al. (1997).

Theorem 1 (Over#ows, Bertsimas et al., 1997). In the
two-class system , under the GPS policy , assuming that the
arrival and service processes satisfy Assumptions A}C ,
the steady-state queue length in the xrst buwer , ¸1 , satisxes

lim
U?=

1

;
log P[¸15;]"!hH

L ,1
, (8)

where hH
L ,1

is given by

hH
L ,1

"minC inf
a;0

1

a
"IH

GPS,1
(a) , inf

a;0

1

a
"IIH

GPS,1
(a)D ,

and the functions "IH
GPS,1

( ) ) and "IIH
GPS,1

( ) ) are dexned as
follows:

"IH
GPS,1

(a)O inf
x1`x2~x3/a

x2y(2x3

["H
A

1(x1
)#"H

A
2(x2

)#"H
B
(x

3
)], (9)

"IIH
GPS,1

(a)O inf
x1~(1x3/a
x2z(2x3

["H
A

1(x1
)#"H

A
2(x2

)#"H
B
(x

3
)]. (10)

Intuitively, the above theorem states that for large
values of the bu!er size; the queue length ¸1 behaves as

P[¸15;]&e~UhHL ,1.

Next, we state an alternative expression for hH
L ,1

(see
Bertsimas et al., 1997 for a proof ), which may be more
convenient in computations. Consider a convex function
f (u) with the property f (0)"0. We de"ne the largest root
of f (u) to be the solution of the optimization problem
sup

u>f(u):0
u. If f ( ) ) has negative derivative at u"0, there

are two cases: either f ( ) ) has a single positive root or it
stays below the horizontal axis u"0, for all u'0. In the
latter case, we will say that f ( ) ) has a root at u"R.

Theorem 2 (Bertsimas et al., 1997). hH
L ,1

is the largest
positive root of the equation

"
GPS,1

(h)O"
A

1(h)# inf
0yuyh

["
A

2(h!u)#"
B
(!h#/

2
u)]

"0. (11)

In addition to the exponent hH
L ,1

, the analysis in
Bertsimas et al. (1997) also characterizes the most-
likely ways (in the sense that they maximize the over#ow
probability) that over#ow occurs. In particular, we
distinguish two cases:

Case 1: Suppose hH
L ,1

"inf
a
"IH

GPS,1
(a)/a holds. Let

aH'0 be the optimal solution of this optimization prob-
lem. In this case, the "rst queue is building up linearly
with rate aH, during a period with duration ;/aH, up to
an O(;) level. During the same time interval, the second
queue stays at an o(;) level, and the empirical rates of the
processes A1, A2 and B, are roughly equal to the optimal
solution (xH

1
,xH

2
,xH

3
), respectively, of the optimization

problem appearing in the de"nition of "IH
GPS,1

(aH)
(Eq. (9)).

Case 2: Suppose hH
L ,1

"inf
a
"IIH

GPS,1
(a)/a holds. Let

aH'0 be the optimal solution of this optimization prob-
lem. In this case, both queues are building up to an O(;)
level. The "rst queue builds up linearly with rate aH,
during a period with duration ;/aH. During this period
the empirical rates of the processes A1, A2 and B, are
roughly equal to the optimal solution (xH

1
,xH

2
,xH

3
), respec-

tively, of the optimization problem appearing in the
de"nition of "IIH

GPS ,1
(aH) (Eq. (10)).

It is interesting to re#ect at this point on the implica-
tions of this result on admission control. Consider an
admission control mechanism for queue Q1 designed to
guarantee a desirable level of the over#ow probability.
A worst-case analysis as in Parekh and Gallager (1993)
would conclude that the admission control mechanism
has to be designed with the assumption that the second
queue always uses a fraction /

2
of the service capacity. In

contrast, due to their probabilistic nature, our results
suggest that a signi"cant (statistical multiplexing) gain
can be realized by not imposing this assumption. In the
over#ow mode described in Case 1 above, the second
queue consumes less than the fraction /

2
of the total

service capacity, leaving the remaining capacity for the
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"rst queue. This implies that additional class 1 connec-
tions can be accommodated without compromising the
QoS. Even if the over#ow mode described in Case 2
above prevails, the over#ow probability is explicitly
calculated (in an exponential scale) and can be taken
into account in the design of the admission control
mechanism.

5. Two-class case: delay probabilities

We now turn our attention to the probability of large
delays. We assume that the FCFS policy is implemented
for customers of the same class. We "rst establish a gen-
eral result for the delay that customers are facing in each
of the queues Q1 and Q2. Recall that D1

i
and D2

i
denote

the sojourn time in the system of a virtual customer
arriving at time i (we assume that the virtual customer
arrives at the beginning of time slot i before any other
customer arrives or departs at the same slot).

Theorem 3. Assuming that customers in queue Q1 are
served in the order they arrive (FCFS policy) , for each
m3N

`
we have that

P[D1
0
5m]"P[¸1

m
5SA

1

0, m~1
].

Proof. Consider a virtual customer arriving at the begin-
ning of time slot 0 in Q1. If D1

0
5m then the customer

should be in the system at time slot m!1, and because
Q1 operates in a FCFS fashion, the queue length at time
slot m, denoted by ¸1

m
(recall that this does not includes

arrivals and departures during time slot m), should in-
clude all the arrivals after the virtual customer. Thus,
D1

0
5m implies ¸1

m
5SA

1

0 , m~1
. Hence P[D1

0
5m]4

P[¸1
m
5SA

1

0 , m~1
]. Similarly, ¸1

m
5SA

1

0, m~1
implies that

the customer arriving at the beginning of time slot 0 is
still in the system at time slot m!1. h

We are interested in obtaining the probability
P[D1

0
5m], up to "rst degree in the exponent, for large

values of m. Using stationarity, the above theorem
implies

P[D1
~m

5m]"P[¸1
0
5SA

1

~m ,~1
]; (12)

we will be using the latter expression to calculate the
probability that the delay gets large.

To this end we will employ an approach developed in
Bertsimas et al. (1998a). In particular, and in the standard
large deviations methodology we will establish a lower
and a matching (up to "rst degree in the exponent) upper
bound on this probability. Consider all scenarios (paths)
that lead to large delays (larger than m) in the "rst bu!er.
We will show that the probability P[u] of each such
scenario u asymptotically behaves as e~mhD ,1(u), for some
function h

D ,1
(u). For every u , P[u] is a lower bound on

P[D1
0
5m]. We select the tightest lower bound by per-

forming the minimization

hH
D ,1

"min
u

h
D ,1

(u).

This amounts to solving a deterministic optimal control
problem. Optimal trajectories (paths) of the control
problem correspond to most likely over#ow scenarios.
We will show that these must be of one out of two
possible types.

The derivation of the upper bound on P[D1
0
5m] is

less intuitive and more technical; we will omit it in the
interest of space and refer the interested reader to Pas-
chalidis (1996). An alternative proof to the one appearing
there can be obtained by employing the techniques de-
veloped in Dupuis and Ramanan (1997b) and formulate
the problem as a Skorokhod problem as in Dupuis
and Ramanan (1997a). It is then shown in Dupuis and
Ramanan (1997b) that the optimal control (variational)
problem we will solve to obtain the lower bounds pro-
vides the answer to the large deviations problem.

5.1. Delay: The optimal control problem

Consider a virtual customer arriving at time !m. Due
to the stability condition (5), for every possible sample
path that leads to large delay (except sample paths of
measure zero), there exists some time !n4!m at
which both queues are empty. Since we are interested in
the asymptotics as mPR we scale both time and
the levels of the processes A1, A2 and B by m. In
particular, we let ¹"(n!m)/m and de"ne the following
continuous-time functions in D[!1!¹ ,0]:

Ķ j(t)"
1

m
¸jxmty

, j"1, 2,

SX(t)"
1

m
SX
~m(1`T) ,xmty

, X3MA1 , A2 , BN.

Notice that the empirical rate of a process X is roughly
equal to the rate of growth of SX(t). We let x

1
(t) ,x

2
(t) and

x
3
(t) denote the empirical rates of the processes A1 , A2

and B, respectively. The probability of sustaining rates
x
1
(t) ,x

2
(t) and x

3
(t), in the interval [!(1#¹) ,0] for

large values of m is given (up to "rst degree in the
exponent) by

expG!mP
0

~T~1

["H
A

1(x1
(t))#"H

A
2(x2

(t))#"H
B
(x

3
(t))] dtH.

(13)

This cost functional is a consequence of Assumption B.
With the scaling introduced here, as mPR the se-
quence of slopes a

0
, a

1
,2, a

m~1
appearing there con-

verges to the empirical rate x( ) ) and the sum of rate
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functions appearing in the exponent (see Eq. (3)) con-
verges to an integral. Similarly, a `polygonal approxima-
tiona to Ķ j(t) (see Dembo & Zeitouni, 1993, Section 5.1;
Dembo & Zajic, 1995) converges to some continuous
functions ¸j(t), for j"1, 2.

The empirical rates x
1
(t) , x

2
(t) and x

3
(t), along with ¹,

characterize a particular scenario (path) of achieving
D1

0
5m. The probability of such a scenario is a lower

bound on the delay probability P[D1
0
5m], and is given

by the expression in (13). To obtain a tight lower bound,
we seek a path with maximum probability, i.e., a min-
imum cost path where the cost functional is given by the
integral in the exponent of (13). This optimization is
subject to the constraints ¸1(!1!¹)"¸2(!1!¹)
"0 and

¸1(0)'P
0

~1

x
1
(t) dt.

The latter constraint guarantees (cf. Eq. (12)) that we have
a large delay, i.e., D1

0
5m. The #uid levels in the two

queues ¸1(t) and ¸2(t) are the state variables and the
empirical rates x

1
(t) ,x

2
(t) and x

3
(t) are the control vari-

ables. The dynamics of the system depend on the state
and on the particular scheduling policy that is imple-
mented. In the GPS case, depending on which queue is
empty, there are three regions of the state space with
di!erent set of dynamics in each region. In particular we
have:

Region A: ¸1(t) ,¸2(t)'0, where according to the GPS
policy

Q̧ 1"x
1
(t)!/

1
x
3
(t) and Q̧ 2"x

2
(t)!/

2
x
3
(t).

Region B: ¸1(t)"0,¸2(t)'0, where according to the
GPS policy

Q̧ 2"x
1
(t)#x

2
(t)!x

3
(t).

Region C: ¸1(t)'0,¸2(t)"0, where according to the
GPS policy

Q̧ 1"x
1
(t)#x

2
(t)!x

3
(t).

Dotted variables in the above expressions denote
derivatives.1 Let (GPS-DYNAMICS) denote the set of
state trajectories ¸j(t), j"1, 2, t3[!1!¹ ,0], that
obey the dynamics given above.

1Here we use the notion of derivative for simplicity of the exposition.
Note that these derivatives may not exist everywhere. Thus, in Region
B for example, the rigorous version of the statement Q̧ 2"x

1
(t)#

x
2
(t)!x

3
(t) is ¸2(t

2
)"¸2(t

1
)#:t2

t1
(x

1
(t)#x

2
(t)!x

3
(t)) dt, for all inter-

vals (t
1
, t

2
) that the system remains in Region B.

We next formally de"ne the following deterministic
optimal control problem which will be referred to as
(GPS-DELAY):

minimize P
0

~T~1

["H
A

1(x1
(t))#"H

A
2(x2

(t))

#"H
B
(x

3
(t))] dt (14)

subject to ¸1(!¹!1)"¸2(!¹!1)"0,

¸1(0)'P
0

~1

x
1
(t) dt ,

¸2(0): free, ¹: free,

M¸j(t): t3[!¹!1,0], j"1,2N

3(GPS-D>NAMICS).

To solve the above problem we decompose it into the two
time intervals [!1!¹ ,!1] and [!1,0]. First note
that for all t3[!1,0] we have

P
0

~1

x
1
(q) dq(¸1(0)4¸1(t)#P

0

t

x
1
(q) dq4¸1(t)

#P
0

~1

x
1
(q) dq ,

which implies

¸1(t)'0, ∀t3[!1, 0]. (15)

Thus, the state trajectory in the interval [!1,0] does not
touch the ¸2-axis in the ¸1!¸2 space. Let now
¸1H(!1) denote the level of bu!er Q1 at time !1 in the
optimal trajectory. The problem in the time interval
[!1!¹ ,!1] can be interpreted as an `over#owa
problem for bu!er Q1, i.e., optimally reach the value
¸1H(!1) starting from an empty system. In particular we
denote this problem by (GPS-OVERFLOW) and is for-
mulated as

minimize P
~1

~T~1

["H
A

1(x1
(t))#"H

A
2(x2

(t))

#"H
B
(x

3
(t))] dt (16)

subject to ¸1(!¹!1)"¸2(!¹!1)"0,

¸1(!1)"¸1H(!1), ¸2(0): free, ¹: free,

M¸j(t): t3[!¹!1,!1], j"1, 2N

3(GPS-DYNAMICS).

In fact, as shown in Bertsimas et al. (1997), the above is
exactly the optimal control problem corresponding to
large deviations of the queue length process, with the
only exception that the "nal value is constrained to be
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Fig. 3. Candidates for optimal state trajectories of (GPS-DELAY). From Set I, candidates for optimal trajectories are reduced to case (a). From Set II,
candidates for optimal trajectories are reduced to case (d).

Fig. 2. Optimal state trajectories for (GPS-OVERFLOW).

1 instead of ¸1H(!1). Its optimal value is hH
L ,1

as de"ned
in the statement of Theorem 1. In Bertsimas et al. (1997) it
is also shown that the optimal state trajectory of (GPS-
OVERFLOW) must be of one out of the two possible
types depicted in Fig. 2. Moreover, there is an one-to-one
correspondence between the most-likely modes of
over#ow described in Section 4 and these optimal state
trajectories.

We next focus on the time interval [!1,0]. We will
need the following lemma which is proved in Bertsimas et
al. (1997, 1998a) based on the convexity of the large
deviation rate functions "H

A
1( ) ) ,"H

A
2( ) ) and "H

B
( ) ).

Lemma 4. Fix a time interval [!¹
1
,!¹

2
]. Consider

a segment of a control trajectory Mx
1
(t), x

2
(t) , x

3
(t);

t3[!¹
1
,!¹

2
]N , achieving cost < , such that the corre-

sponding state trajectory M¸1(t) ,¸2(t); t3(!¹
1
,!¹

2
)N

stays in one of the regions A , B , or C. Then there exist
scalars x6

1
, x6

2
and x6

3
such that the segment of the control

trajectory Mx
1
(t)"x6

1
, x

2
(t)"x6

2
, x

3
(t)"x6

3
; t3[!¹

1
,

!¹
2
]N achieves cost at most< , with the same correspond-

ing states at t"!¹
1

and t"!¹
2
.

This result suggests that optimal control trajectories can
be taken to be constant within each of the three regions of
state dynamics. Thus, depending on the form of the
segment of the state trajectory in [!1!¹ ,!1] we
distinguish two di!erent sets of candidates for optimality.

These are depicted in Fig. 3. For candidates belonging
to Set I (Set II, respectively), the segment of the state
trajectory in [!1!¹ ,!1] has the form of Fig. 2(a)
(Fig. 2(b), respectively).

Let us "rst examine the state trajectories in Set I.
Consider the trajectory in Fig. 3(b). Let y

j
and x

j
,

j"1, 2, 3, be the controls in the time intervals
[!1!¹ ,!1] and [!1,0], respectively. We have

y
2
4/

2
y
3
,

x
2
5/

2
x
3
,

¹(y
1
#y

2
!y

3
)#(x

1
!/

1
x
3
)5x

1
,

which implies

y
2
4/

2
y
3
, (17)

x
2
5/

2
x
3
, (18)

¹(y
1
#y

2
!y

3
)5/

1
x
3
. (19)

We now claim that x
3
5y

3
. To show this we assume that

x
3
(y

3
and we will arrive at a contradiction. With

x
3
(y

3
, and for small e'0, we increase x

3
to x

3
#e and

decrease y
3

to y
3
!e/¹, such that the total number of

services in [!1!¹ ,0] stays constant. Note that con-
straint (19) is not violated since ¹(y

1
#y

2
!y

3
)#

e5/
1
x
3
#/

1
e. Also, due to convexity the cost is de-

creased. We can keep doing this until one of constraints
(17) or (18) is violated. This however contradicts the
initial assumption that the trajectory has the form of Fig.
3(b). Thus, we conclude that x

3
5y

3
. This implies that

y
2
4x

2
since y

2
4/

2
y
3
4/

2
x
3
4x

2
. For small e'0,

we can now keep increasing y
2

to y
2
#e/¹, and decreas-

ing x
2

to x
2
!e, without violating (19), until one of

constraints (17) or (18) is violated. This also contradicts
the initial assumption that the trajectory has the form of
Fig. 3(b). We "nally conclude that we can exclude the
trajectory in Fig. 3(b) from our search for optimality. The
same argument also excludes the trajectory in Fig. 3(c)
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from this search. Hence, from trajectories in Set I, candi-
dates for optimality are restricted to trajectories of the
form of Fig. 3(a).

We next examine trajectories in Set II. Consider the
trajectory in Fig. 3(e). Let !(1!f) the time that this
trajectory hits the ¸1-axis in the interval [!1,0]. Let
y
i
, i"1, 2, 3, be the rates during [!1!¹ ,!1] and

x
i
, i"1, 2, 3, the rates during [!1,!(1!f)]. By tak-

ing the time average over the controls in the interval
[!1!¹ ,!(1!f)] we obtain constant controls dur-
ing this interval. Let y6

2
and y6

3
be the arrival rate in the

second bu!er and the service rate, respectively, during
the same interval. From the form of the trajectory we
should have (¹#f)(y6

2
!/

2
y6
3
)"0, which implies

y6
2
"/

2
y6
3
. Thus, the trajectory reduces to the one in

Fig. 3(a). The same argument applies in the trajectory
in Fig. 3(f) which reduces to the one in Fig. 3(c). Hence,
from trajectories in Set II, candidates for optimality
are restricted to trajectories of the form of Fig. 3(d).
We summarize this discussion in the following
proposition.

Proposition 5. The state trajectories in Figs. 3(a) and (d)
are optimal.

5.1.1. Optimal value of (GPS-DELAY)
Next, we calculate the optimal value of the control

problem (GPS-DELAY). The result of the above prop-
osition allows us to consider only trajectories of the form
of Figs. 3(a) and (d). Consider "rst the former. Let y

i
, and

x
i
, i"1, 2, 3, be the rates during the time intervals

[!1!¹ ,!1] and [!1,0], respectively. The feasibil-
ity constraints are

y
2
4/

2
y
3
,

x
2
4/

2
x
3
,

¹(y
1
#y

2
!y

3
)#(x

2
!x

3
)50.

Taking the time average for x
2
, y

2
(i.e., (1#¹)x6

2
"

¹y
2
#x

2
) and for x

3
, y

3
(i.e., (1#¹)x6

3
"¹y

3
#x

3
), we

improve the cost and we obtain

x6
2
4/

2
x6
3
, (20)

¹y
1
#(1#¹)(x6

2
!x6

3
)50. (21)

Therefore for trajectories of the form of Fig. 3(a) the
optimal cost is

hIH
D ,1

"inf
T

inf
x6 2y(2x6 3

Ty1`(1`T)(x6 2~x6 3)z0

[¹"H
A

1(y1
)#"H

A
1(x1

)#(1#¹)("H
A

2(x6 2)#"H
B
(x6

3
))].

Notice in the optimization problem above we can take
x
1
"E[A1], making "H

A
1(x1

)"0. We next manipulate
the above expression, using convex duality, to arrive at
a more compact formula. Let us "rst de"ne

"I
GPS,1

(h)O"
A

1(h)# inf
uz0

["
A

2(h!u)#"
B
(!h#u/

2
)] ,

(22)

and

"II
GPS ,1

(h)O"
A

1(h)# inf
uyh

["
A

2(h!u)#"
B
(!h#u/

2
)],

(23)

which, as it can be easily veri"ed, are the convex duals of
"IH

GPS,1
( ) ) and "IIH

GPS,1
( ) ) (cf. Eqs. (9) and (10)), respectively.

We then have

hIH
D ,1

"inf
T
C! sup

(1`T)x6 2y(1`T)(2x6 3
Ty1`(1`T)(x6 2~x6 3)z0

[!¹"H
A

1(y1
)!(1#¹)("H

A
2(x6 2)#"H

B
(x6

3
))]D

"inf
T
C! inf

u1 , u2z0

sup[u
1
(1#¹)/

2
x6
3
!u

1
(1#¹)x6

2

# u
2
(1#¹)(x6

2
!x6

3
)#u

2
¹y

1
!¹"H

A
1(y1

)

! (1#¹)("H
A

2(x6 2)#"H
B
(x6

3
))]D

"inf
T
C! inf

u1 , u2z0

[¹"
A

1(u2
)#(1#¹)("

A
2(u2

!u
1
)

#"
B
(!u

2
#u

1
/
2
))]D

"inf
T
C! inf

u2z0

[¹"
A

1(u2
)#(1#¹)("I

GPS,1
(u

2
)

!"
A

1(u2
))]D

"inf
T

sup
u2z0

["
A

1(u2
)!(1#¹)"I

GPS,1
(u

2
)]. (24)

We next consider the trajectory of Fig. 3(d). We again let
y
i
, and x

i
, i"1, 2, 3, be the rates during the time inter-

vals [!1!¹ ,!1] and [!1, 0], respectively. The
feasibility constraints are

y
2
5/

2
y
3
,

x
2
5/

2
x
3
,

¹(y
1
!/

1
y
3
)#(x

1
!/

1
x
3
)5x

1
.
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Taking the time average for x
2
, y

2
(i.e., (1#¹)x6

2
"

¹y
2
#x

2
) and for x

3
, y

3
(i.e., (1#¹)x6

3
"¹y

3
#x

3
), we

improve the cost and we obtain

x6
2
5/

2
x6
3
, (25)

¹y
1
5(1#¹)/

1
x6
3
. (26)

Therefore for trajectories of the form of Fig. 3(d) the
optimal cost is

hIIH
D ,1

"inf
T

inf
x6 2z(2x6 3

Ty1z(1`T)(1x6 3

[¹"H
A

1(y1
)#"H

A
1(x1

)#(1#¹)("H
A

2(x6 2)#"H
B
(x6

3
))].

Notice again in the optimization problem above we can
take x

1
"E[A1], making "H

A
1(x1

)"0. As in Eq. (24), we
manipulate the above expression and after some algebra
we obtain

hIIH
D ,1

"inf
T

sup
u2z0

["
A

1(u2
)!(1#¹)"II

GPS,1
(u

2
)]. (27)

Hence the optimal value of (GPS-DELAY) is
hH
D ,1

"min(hIH
D ,1

,hIIH
D ,1

) which yields

hH
D ,1

"min(hIH
D ,1

,hIIH
D ,1

)

"inf
T

sup
u2z0

["
A

1(u2
)!(1#¹)"

GPS,1
(u

2
)]

" sup
u2z0>"GPS ,1(u2):0

["
A

1(u2
)!"

GPS ,1
(u

2
)] , (28)

by de"ning "
GPS,1

(h)Omax["I
GPS ,1

(h) , "II
GPS ,1

(h)]. Notice
that the latter is consistent with the de"nition given in
Eq. (11). We have proved the following theorem.

Theorem 6. The optimal value , hH
D ,1

, of the control problem
(GPS-DELAY) is given by the following expression:

hH
D ,1

" sup
uz0>"GPS ,1(u):0

["
A

1(u)!"
GPS,1

(u)].

As outlined in the beginning of this section, the solu-
tion to the control problem provides a lower bound on
the probability of large delay and the optimal trajectories
identify the most likely ways that large delays occur. This
lower bound along with a matching upper bound proved
in Paschalidis (1996) establish the following theorem
which is the main result of this Section.

Theorem 7 (Delay). In the two-class system under the GPS
policy , assuming that the arrival and service processes
satisfy Assumption A}C , the steady-state delay , D1 , of
queue Q1 satisxes

lim
m?=

1

m
logP[D15m]"!hH

D ,1
,

where

hH
D ,1

" sup
u2z0>"GPS ,1(u2):0

["
A

1(u2
)!"

GPS,1
(u

2
)]

and where "
GPS,1

( ) ) is as dexned in Theorem 2.

We conclude our analysis of the two-class case by
noting that due to symmetry the results can be easily
adapted to cover over#ows and delays in bu!er Q2 as
well. To this end, it su$ces to substitute /

1
:"1!/

1
in

the above formulas and swap A1 with A2.

6. Extensions to the multiclass case and re5nements

The general multiclass problem is particularly hard
since there is an exponential explosion of the number of
over#ow (or delay) modes. As a consequence, no full large
deviations results have been obtained for this case
(special cases have been addressed in Bertsimas et al.,
1997; de Veciana & Kesidis, 1995; Courcoubetis &
Weber, 1995b; MassoulieH , 1998; O'Connell, 1995; Zhang,
1997). We will therefore, resort to an approximation of
the over#ow and delay probabilities, which is based on
our two-class results. We will provide some analytical
and numerical evidence that the approximation is a
good one.

Let us focus on the over#ow and delay probability in
the "rst bu!er Q1. To approximate the performance of
the multiclass system we consider a corresponding two-
class system where the input to the "rst bu!er is identical
to the process MA1; i3ZN, and the input to the second
bu!er, to be denoted by AK 2, is equal to the aggregate of
the processes A2 ,2 , AM. By de"ning all the input pro-
cesses A1 ,2 ,AM and the service process B in the two
systems on a common probability space, we can assume
that the actual arrivals and services are the same in the
two systems. Consider a busy period of the multiclass
system that leads to a Q1 over#ow. If during this busy
period all bu!ers are nonempty, then bu!er Q1 receives
just its allocated fraction /

1
of the capacity; the same is

true in the corresponding two-class system, since the
total number of bits in Q2 ,2 ,QM will also be nonzero. If
during this busy period of over#ow all bu!ers Q2 ,2 , QM

remain empty in the multiclass system, then Q1 gets the
excess capacity; in the corresponding two-class system
the evolution of Q1 is identical since it receives exactly the
same amount of capacity. If however, during this busy
period of over#ow only some of the bu!ers Q2 ,2 , QM

remain empty in the multiclass system, bu!er Q1 receives
a fraction of the excess capacity. Under the same condi-
tions, in the two class-system it might be the case that the
total number of bits in Q2 ,2 ,QM is nonzero, which
implies that Q1 receives only its fraction /

1
of the capa-

city. On the other hand, in the latter system the second
bu!er receives more capacity than all the bu!ers
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Q2 ,2 ,QM in the multiclass system, which implies that it
has a shorter busy period and when it gets empty Q1 will
receive all the excess capacity. That is, there are times
that Q1 receives more capacity in the two-class system.
Intuitively, in the two-class system Q1 receives capacity
in a more bursty manner. The following proposition
compares the over#ow probability of bu!er Q1 in the two
systems in some special cases.

Proposition 8. Assume that the arrival and service pro-
cesses satisfy Assumption A}C. Let ¸1 denote the steady-
state queue length in the xrst buwer of the multiclass system ,
and Ķ 1 the same quantity in the corresponding two-class
system.

(1) If +M
j/2

E[Aj]5+M
j/2

/
j
E[B] then

lim
U?=

1

;
logP[¸15;]4 lim

U?=

1

;
log P[ Ķ 15;]. (29)

(2) If the capacity is deterministic, i.e. , B
i

is equal to
some constant almost surely (a.s.) for all i , and
E[Aj]4/

j
E[B] for all j"1,2,M then

lim
U?=

1

;
logP[¸15;]4 lim

U?=

1

;
log P[ Ķ 15;]. (30)

(3) If the capacity is deterministic , E[Aj]4/
j
E[B]

for all j"1,2, M , /
2
"2"/

M
, and "H

A
2(x)"2

""H
A

M(x) for all x3R , then

lim
U?=

1

;
logP[¸15;]" lim

U?=

1

;
log P[ Ķ 15;]. (31)

Proof. To show Part 1, let us focus on the queue length
¸1
0

at time 0 in the multiclass system. We consider a busy
period of the "rst queue, Q1, that starts at some time
!nH40 (¸1

~n
H"0) and has not ended until time 0.

Notice that due to the stability condition (5) and the
fact +M

j/2
E[Aj]5+M

j/2
/
j
E[B], it is true that

E[A1](/
1
E[B], which implies that such a time !nH

exists w.p.1. We will focus on sample paths of the multi-
class system in [!nH ,0] that lead to ¸1

0
';. Note that

¸1
0
4SA

1

~n
H ,~1

!/
1
SB
~n

H ,~1
. (32)

Thus,

P[¸1
0
';]4P[&n50 s.t. SA

1

~n ,~1
!/

1
SB
~n ,~1

';]

4PCmax
nz0

(SA
1

~n ,~1
!/

1
SB
~n ,~1

)';D. (33)

We next upper bound the moment generating function of
max

nz0
(SA

1

~n ,~1
!/

1
SB
~n ,~1

). Applying the LDP (due to

Assumption A) for the arrival and service processes for
h50 we can obtain

E[eh.!9nz0(SA1

~n ,~1~(1S
B
~n ,~1)]4 +

nz0

E[eh(SA1

~n ,~1~(1S
B
~n ,~1)]

4 +
nz0

en("A1(h)`"B(~(1h)`e)

4K(h , e) if "
A

1(h)

#"
B
(!/

1
h)(0, (34)

since when the exponent is negative (for su$ciently
small e), the in"nite geometric series converges to some
K(h , e). We can now apply the Markov inequality in (33)
to obtain

P[¸1
0
';]4E[eh.!9nz0(SA1

~n ,~1~(1S
B
~n ,~1)]e~hU

4K(h , e)e~hU if "
A

1(h)#"
B
(!/

1
h)(0.

(35)

Taking the limit as ;PR and minimizing over h to
obtain the tightest bound we establish

lim
U?=

1

;
logP[¸1

0
';]4! sup

Mhz0>"A1(h)`"B(~(1h):0N

h.

We are now left with proving that the right-hand side of
the above is equal to to the exponent of the over#ow
probability in the two-class system, denoted !hH

LK ,1
,

which can be obtained from Theorem 1 when A2 is
replaced by the superposition of A2 ,2, AM. This is done
in Bertsimas et al. (1997). Parts 2 and 3 are shown in
MassoulieH (1998). h

The performance of the corresponding two-class sys-
tem can be easily obtained by applying the two-class
results, that is, Theorems 1 and 7. The statistics of the
aggregate process AK 2 are characterized by

"
AK

2(h)"
M
+
j/2

"
A

j(h) , (36)

and

"H
AK

2(x)" inf
+ M

j/2xj/x

M
+
j/2

"H
A

j(x
j
). (37)

The "rst expression is easily obtained from the de"nition
of the limiting log-moment generating function, and the
latter one by standard convex duality properties (see
Rockafellar, 1970).

6.1. Rexnements of the asymptotics

It has been observed that the asymptotic exp(!;hH
L , j

)
(resp. exp(!mhH

D , j
)) might not always yield a very accu-

rate approximation of the over#ow probability (resp.
delay probability) for class j. A re"nement of this asymp-
totic can be obtained by introducing a constant in front
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Fig. 4. The models for arrival and service processes in the three-class example. By r we denote the vector of bits arriving (or departing) per time slot at
each state of the corresponding Markov chain. The Markov chains make one transition per time slot.

Table 1
Comparing the analytical results (cf. Eq. (38)) with simulation results for the three-class example of Fig. 4 and for various bu!er sizes ;

Class 1 Class 2 Class 3

U Anal. Simul. U Anal. Simul. U Anal. Simul.

7 1.8]10~3 1.5]10~3 60 1.7]10~3 1.2]10~3 14 1.6]10~3 1.8]10~3

9 4.4]10~4 3.3]10~4 70 6.6]10~4 4.5]10~4 18 3.0]10~4 3.9]10~4

11 8.7]10~5 7.4]10~5 80 2.5]10~4 1.6]10~4 22 6.3]10~5 8.4]10~5

13 2.0]10~5 1.6]10~5 90 9.8]10~5 6.3]10~5 26 1.3]10~5 1.8]10~5

15 4.3]10~6 3.6]10~6 110 1.4]10~5 9.0]10~6 30 2.8]10~6 3.9]10~6

17 9.1]10~7 7.9]10~7 120 5.6]10~6 3.3]10~6 34 5.7]10~7 8.6]10~7

18 4.8]10~7 3.7]10~7 140 8.4]10~7 5.2]10~7 38 1.2]10~7 1.8]10~7

of the exponential, that is, for all j using the following
expressions

P[¸j5;]&a
L , j

e~UhHL , j , (38)

P[Dj5m]&a
D , j

e~mhHD , j (39)

for the over#ow and delay probabilities, respectively.
An estimate of the constants a

L , j
and a

D , j
can be

obtained by using an idea from Abate, Choudhry and
Whitt (1995) and assuming that the above expressions
provide the exact distribution of the queue length and
delay, respectively. Matching the expectation of the dis-
tributions in (38) and (39) with E[¸j] and E[Dj], respec-
tively, we obtain

a
L , j

"hH
L , j

E[¸j], (40)

and

a
D , j

"hH
D , j

E[Dj]. (41)

Thus, to "nd the asymptotic constant we need the expec-
tations of the queue length and delay processes, which
can be obtained by simulation or direct measurements.
As it will become apparent in Section 7 to implement the

approach proposed in this paper one needs to obtain
a model for the demand and service processes from real
data (e.g., via on-line estimation). Thus, simulating or
observing in the actual system the expectations E[¸j]
and E[Dj] incurs no substantial additional computa-
tional cost. The interesting point here is that although
small tail probabilities are very hard to reliably simulate
or observe, it is computationally easy to simulate or
observe expectations of queue lengths and delays.

We next present a numerical example indicating that
the multiclass approximation proposed in this section
combined with the above re"nements of the asymptotics
is accurate. We simulated a three-class system and com-
pared the simulated over#ow probabilities in the three
bu!ers with the analytical approximations as presented
in this section (i.e., two-class approximation of the multi-
class system combined with the proposed re"nements of
the asymptotics). We used the GPS policy with para-
meters /"(/

1
, /

2
,/

3
)"(0.3, 0.3, 0.4). All arrival and

service processes are Markov-modulated processes (see
Fig. 4). The results are reported in Table 1. The analytical
asymptotic appears to be capturing the order of
magnitude of the probability very accurately; the "rst
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signi"cant digit also appears to be close to the simulated
value. Since the asymptotic for the delay probability is
similar in nature we expect that it has similar accuracy.

7. Admission control

In this section we propose an admission control ap-
proach based on the performance analysis results de-
veloped so far. The objective is to develop a call
admission algorithm that provides both loss and delay per
class QoS guarantees.

Consider the architecture of Fig. 1 and recall the nota-
tion introduced in Section 3. With N

j
class j calls admit-

ted, the aggregate arrival process Aj in the jth bu!er Qj is
characterized by "

A
j(h)"N

j
"

AI
j(h), for all h and j. To

make things simpler, let us assume that the service pro-
cess is deterministic with rate c bits/s (b/s), although our
analytical results allow us to handle stochastic capacities.
Notice that "

B
(h)"ch for all h. The objective is to satisfy

the QoS constraints in Eqs. (6) and(7).
The admission controller has the freedom to:

(1) select the appropriate bu!er sizes ;
j
, and

(2) restrict the number of admitted calls,

in order to guarantee these QoS constraints. We next
argue that the appropriate bu!er sizes are ;

j
"cDj

.!9
.

Consider "rst setting ;
j

to a value larger than cDj
.!9

.
This implies that the system will be accepting bits for
transmission that require more than Dj

.!9
to clear their

corresponding bu!er j. Such bits severely degrade the
performance, therefore, they are of no use in the receiving
end and could be discarded up front. Consider next
setting the bu!er to a value smaller than cDj

.!9
. This

implies that the system will be `blindlya discarding bits
that have a possibility of clearing their corresponding
bu!er j within Dj

.!9
of their arrival,2 i.e., without checking

whether the given QoS constraints are satis"ed or not.
We therefore, choose to set bu!er sizes to;

j
"cDj

.!9
, for

all j, and leave to the admission controller to enforce the
QoS constraints. Of course, if the cost to accommodate
these bu!er requirements is an issue, one can alterna-
tively select a fraction of the proposed bu!er sizes at
some potential e$ciency cost.

Hereafter, as we have indicated in Section 3 we will use
our analytical results developed for the in"nite bu!er
system, although we are in reality dealing with a "nite
bu!er system. We have argued in Section 3 that the level
crossing probability in the in"nite bu!er system, which
we have analytically estimated, closely approximates the
loss probability in the "nite bu!er system (in the ex-
ponential scale we are considering in this paper). More-
over, the delay probability in the in"nite bu!er system is

2Note that this depends on what happens in the other bu!ers.

a tight upper bound (in the exponential scale) on the
delay probability in the "nite bu!er system, which im-
plies that we can guarantee the latter by guaranteeing the
former.

A useful observation is that with bu!er sizes at
;

j
"cDj

.!9
the event ¸j5;

j
implies the event

Dj5Dj
.!9

, thus,

P[¸j5;
j
]4P[Dj5Dj

.!9
], j"1, 2,2,M. (42)

Hence, to provide the QoS guarantees3 we only need to
guarantee the delay probability constraint (Eq. (7)). Us-
ing the asymptotic in (39), we can ensure the delay QoS
constraint in (7) if and only if hH

D , j
5dj

D
, where

dj
D
O!log(d

j
/a

D , j
)/Dj

.!9
.

We proceed with de"ning the notion of admission
region. Let /"(/

1
,2, /

M
), and N"(N

1
,2, N

M
).

De5nition 9. We will call admission region for the system
of Fig. 1 operated under the GPS policy the set

AOG(/ , N) D /
j
3[0, 1],

M
+
j/1

/
j
"1, N

j
3N

`
,

hH
D , j

5dj
D
, j"1,2 ,MH

If a vector (/ ,N)3A, we can ensure that the delay
QoS constraint (7) is satis"ed, and by virtue of (42), the
loss QoS constraint (6) is satis"ed as well.

Based on this de"nition, the proposed admission con-
trol algorithm takes the following form: (assume without
loss of generality a class 1 call request)

if there exists / such that (/ , N#e
1
)3A

then accept;
else reject;

end,

where e
1
"(1, 0,2, 0).

An issue of practical interest is whether admission
decisions can be taken in a very short period of time (e.g.,
on the order of seconds) from the time admission requests
are placed (we will refer to this as real-time operation).
We expect the calculations required to determine the
admission region to be computationally burdensome,
depending on the complexity of the arrival model (recall
a nonlinear optimization problem has to be solved to
determine hH

D , j
). When an adequate tra$c model for the

arrival processes is available these calculations can be

3 If smaller bu!er sizes are used then one needs to enforce both the
over#ow and delay QoS constraints, which can be done by using the
over#ow analytical result in addition to the one for delay which is used
here.
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Table 2
Tra$c Parameters for the ON-OFF model. E[t

ON
] denotes the expected amount of time that the tra$c source

stays in the ON state. For both classes of tra$c it can be easily veri"ed that the embedded Markov chain makes
one transition every 1 msec (ms)

Tra$c parameters QoS parameters

Peak Avg. E[t
ON

] a b D
.!9

d
(Mb/s) (Mb/s) (ms) (ms)

Type 1 2 1 25 0.04 0.04 10 10~6

Type 2 10 2 5 0.05 0.2 30 10~9

performed o!-line. Then, the admission control algo-
rithm reduces to a simple look-up-table operation, which
can be performed in real-time. However, such a tra$c
model is rarely available a priori, and has to be estimated
from the actual tra$c data in an on-line fashion. In this
case, if we were to recalculate the admission region with
every call request we would not have a real-time imple-
mentation. To remedy this we propose to avoid repeating
these calculations so frequently. Instead, the system can
store an appropriate description of the admission region
and update it periodically. More speci"cally, admission
decisions will be made in real-time by look-up-table
operations based on the most current version of the
admission region. The tra$c model and the admission
region can be updated in a longer time scale (e.g., on the
order of minutes) than the one in which admission
decisions will be taken.

We note here that tra$c statistics are typically non-
stationary in practice. We implicitly assume (and this can
be validated from real observations in Du$eld, Lewis,
O'Connell, Russel & Toomey, 1994) that these statistics
change in a much longer time scale (e.g., on the order of
hours) than the one considered above. This justi"es our
approach of using steady-state analytical results for
quantifying QoS.

7.1. The admission region: an example

Next, we provide an example of the admission region
for two classes of tra$c with tra$c and QoS parameters
given by Table 2.We will use this example to illustrate
some of the advantages of the proposed approach, name-
ly, that providing class-speci"c QoS guarantees leads to
signi"cant e$ciency gains when compared to simpler
`e!ective bandwidtha rules.

In this example, both classes of tra$c conform to an
ON-OFF model. Tra$c is generated according to a con-
tinuous-time Markov process, with embedded Markov
chain depicted in Fig. 5. In the ON state, tra$c is produc-
ed with a constant rate of p bits/sec (b/s). We refer to this
as the peak rate. In the OFF state no tra$c is generated.
The tra$c source stays in the ON state a fraction
a/(a#b) of the time and for an expected number of 1/b
transitions of the embedded Markov chain. It generates

tra$c with an average rate of pa/(a#b) b/s. The capa-
city of the server is 135 Mb/s.

A few comments about the tra$c and QoS parameters
are in order. Class 1 tra$c has parameters which are
typical of a video-conferencing call which consists of the
transmission of relatively low activity scenes (people sit-
ting around a table). As a consequence the peak rate is
close to the average rate. Class 2 tra$c is more typical of
a bursty video call (e.g., action movie). To put D

.!9
into

perspective, with a packet size of 53 bytes (size of an
ATM cell) and with a 64 Kb/s rate for voice, the packetiz-
ation delay is about 6 ms (for a discussion of typical QoS
parameters see Hsu & Walrand, 1995).

Fig. 6 depicts the admission region for this particular
example. For every "xed /

1
and N

1
we plot the max-

imum allowed number of class 2 calls, N
2
, such that

(/ ,N)3A, i.e., as long as we operate the system under the
plotted surface, the QoS constraints are satis"ed. In
Fig. 8 we show `waterfalla plots of the admission region
to better depict the shape of the region for N

1
constant

and for /
1

constant ("rst and second plot in Fig. 8,
respectively).

7.1.1. Comparisons with alternative approaches
Let us now compare the admission region generated

here with (a) peak rate-based allocation, and (b) e!ective
bandwidth-based allocation. In (a) we take a worst-case
view and treat each source as if it is always transmitting
with its peak rate. Hence, to guarantee absolutely no
losses and no delays, the system should admit calls to
satisfy 2N

1
#10N

2
4135 (recall that the peak rates for

the two service classes are 2 and 10 Mb/s, and the capa-
city 135 Mb/s). In (b) both classes are fed to a single
bu!er, hence, the QoS they receive is identical and is
determined by the over#ow and delay probability in this
bu!er. As a result, we need to enforce the most stringent
QoS guarantees among the two classes, that is, D

.!9
"10

ms (due to class 1) and d"10~9 (due to class 2). With
these parameters, the single-class version of our admis-
sion control approach reduces to the e!ective band-
width-based allocation. All three approaches are
compared in Fig. 7. It is evident that peak-rate allocation
can be dramatically ine$cient. Moreover, providing
class-speci"c guarantees leads to signi"cant gain in
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Fig. 5. The ON-OFF source model.

Fig. 6. The admission region for the tra$c model and parameters of
Section 7.1.

Fig. 7. Comparison with alternative approaches. The curve referred to
as `class speci"ca in the "gure is obtained by considering the surface in
Fig. 6 and maximizing N

2
over /

1
for each value of N

1
.

e$ciency over the e!ective bandwidth rule. The price to
pay is additional complexity. Note, that the `class speci-
"ca curve in Fig. 6 is no longer linear, as the `e!ective
bandwidtha curve.

Some further observations on the structure of the ad-
mission region are in order. Recall that the admission
region is de"ned to satisfy both constraints

hH
D

15d1
D
, (43)

hH
D

25d2
D
. (44)

Consider the "rst plot of Fig. 8. Notice that for small
values of N

1
, the maximum allowed N

2
is non-decreasing

as /
1

increases in [0,1]. To explain this, notice that for
large /

1
we favor class 1 calls and since these are few

constraint (43) is not tight. The maximum allowed N
2

is
set such that (44) is tight. The situation stays the same
(i.e., maximum allowed N

2
stays constant) as we decrease

/
1

until some threshold value /H
1

at which (43) gets tight.
For smaller /

1
than /H

1
, and since we keep N

1
"xed, to

accommodate class 1 calls (i.e., satisfy (43)) we need to
decrease N

2
. An antipodal phenomenon, in the same

plot, is occurring for large values of N
1
. For small values

of /
1
, (43) is tight while (44) is not. Increasing /

1
more

than some threshold value /H
1

makes (44) tight and thus
we can guarantee the QoS constraints only by dropping
the maximum allowed N

2
.

Let us now turn our attention to the second plot in
Fig. 8, which depicts cross sections of the admission
region for /

1
"xed. Consider cross sections around

/
1
"0.2 to make the discussion clearer. We can distin-

guish roughly three regions: (a) small values of N
1
, (b)

moderate values of N
1
, and (c) large values of N

1
. In

region (a) the maximum allowed N
2

drops almost lin-
early as we increase N

1
. This is occurring because in this

region (43) is not tight while (44) is tight and the only way
to increase N

1
, without compromising the quality of class

2 calls, is to decrease N
2
. The decrease is roughly linear

for the following reason: in this region the dominant
congestion event is large delays in the second bu!er,
which are occurring according to the scenario depicted in
Fig. 3(a). Recall that large delays are occurring because
the second bu!er builds up in the "rst part of that path
(interval [!1!¹ ,!1] with the notation there). Since
according to that path the "rst bu!er stays roughly
empty the second bu!er gets capacity of c!N

1
y
1
, where

y
1

is the most likely arrival rate of class 1 calls during
periods of congestion in the second bu!er (y

1
is the

solution of an optimization problem similar to the one
appearing in Eq. (24)). To have (44) tight, this capacity
should be equal to N

2
y
2
, where y

2
is the most likely

arrival rate of class 2 calls during periods of congestion in
the second bu!er. Thus N

2
"(c!N

1
y
1
)/y

2
which is

linear in N
1
. Now, from region (a), as we keep increasing

N
1

we enter region (b). Still (43) is not tight, however the
most likely way that the second bu!er generates large
delays becomes the scenario of Fig. 3(d), that is by build-
ing up the "rst bu!er also. This means that the "rst bu!er
requires capacity /

1
c and to accommodate type 2 calls

we have decreased their number such that they are
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Fig. 8. Waterfall plots of the admission region for the tra$c model and parameters of Section 7.1. The "rst (left) plot depicts how N
2

is changing with
/
1

for several values of N
1
. The second (right) plot depicts how N

2
is changing with N

1
for several values of /

1
.

satis"ed with capacity /
2
c. We can therefore increase

N
1
even more, until we make (43) tight, without having to

decrease N
2

(notice that in region (b) N
2

is roughly
constant). When (43) becomes tight we enter region (c)
and the only way to further increase N

1
is to drop N

2
.

The drop is roughly linear for a similar reason to the one
explained above. The discussion extends to other values
of /

1
away from /

1
"0.2, with the three regions men-

tioned above degenerating to two (see that for /
1

around
1 we can distinguish only regions (a) and (b)).

8. End-to-end QoS guarantees

So far, in this paper, we have been considering the
case of a single node. It is of course of interest to apply
these control mechanisms in a network environment to
provide end-to-end QoS guarantees.

Towards this goal, one possible direction is to develop
performance analysis results for multiclass networks and
to incorporate them in admission control decisions.
There are both technical and practical problems with this
approach. On the technical side, the network problem
appears to be particularly hard, since in essence it is
needed to obtain distributions of queue lengths and de-
lays in a multiclass network of G/G/1 queues. This has
been accomplished in single-class acyclic networks
(Bertsimas, Paschalidis & Tsitsiklis, 1998b; Chang, 1995).
Related work is reported in de Veciana, Courcoubetis
and Walrand (1993) and Ganesh and Anantharam (1996).
The multiclass case, however, appears much harder and
no LDP results exist (in fact, some negative results have
been reported in Ganesh & O'Connell, 1998). On the
practical side, a network mechanism has to scale to the
full range of speeds and administrative domains that
communication networks (such as the Internet) span.
Moreover, to ensure reliability and high-speed forward-
ing minimal `statea information should be kept at the

internal nodes. This seems to suggest that sophisticated
control mechanisms should be pushed at the edges
(Jacobson, 1998).

In this light, the capacity of the node (equal to a con-
stant c in the development of the admission control
mechanism in Section 7) can be viewed as the capacity of
a "xed bandwidth `pipea (virtual path *VP* in ATM
terminology) from origin to destination.4 Bu!ering and
admission control are done only at the edge of the net-
work. This scheme, where control is pushed at the edge of
the network, is simple to implement since it only requires
from the network the ability to allocate "xed bandwidth
`pipesa.5

9. Conclusions

We have proposed a large deviations-based approach
to QoS provisioning in multimedia communication net-
works. These networks carry a diverse set of applications
at a variety of QoS grades. Since, `per-#owaQoS provis-
ioning and accounting is not scalable in large network
environments, applications are aggregated in a number
of service classes. The emphasis of the proposed ap-
proach is to attend to the particular QoS needs of each
class and provide class-dependent QoS guarantees.

We formulated the performance analysis problem of
estimating over#ow and delay probabilities as optimal
control problems. The solution to these problems
provided both the asymptotic exponent and a

4 In fact, the capacity of the `pipea can vary with time but in a longer
time scale than call admission decisions, hence can be taken constant
for these decisions.

5This capability is available both in ATM networks and can be done
in the Internet (see Jacobson, 1998 on implementing `virtual leased
linesa).
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characterization of the most-likely path for over#ows or
delays. The proposed admission control approach uses
these performance analysis results. We demonstrated
through examples that providing class-speci"c QoS
guarantees can lead to signi"cant gains in e$ciency com-
pared with worst-case and e!ective-bandwidth schemes.
This comes at the expense of increased complexity. In
summary: diversity is e$cient but harder to achieve.
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