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1. Random Vectors
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Random Vectors

• Generalize concepts from 2 random variables on 
the same probability space (Chapter 4, “Pairs of 
Random Variables”) 

to
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to

• N random variables on the same probability 
space (Chapter 5, “Random Vectors”) 

Experiment

Outcomes
SEvent:

{s:(X1(s),X2(s),…) B}

Random Variables 
X1, X2, … SX1,X2, … R
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{ ( 1( ), 2( ), ) }

P(Event) 

(X1,X2, …) B

PX(B) 

Probability Models for  N RVs
• Let X1, X2, …, Xn, be n random variables defined on a 

sample space

• Let X = (X1, X2, …, Xn) be a random vector (All vectors 
are assumed to be column vectors unless stated 
otherwise)
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otherwise) 

• Let u = (u1, u2, …, un) be a real vector

• Notation: {X ≤ u} denotes 
{X1 ≤ u1, X2 ≤ u2, …, Xn ≤ un}, where, as before, the 
commas denote intersections,

{ X ≤ u } = {X1 ≤ u1} ∩ {X2 ≤ u2 } ∩ … ∩ {Xn ≤ un} 

Multivariate Joint CDF
• The joint CDF of X1, X2, …, Xn or the CDF of the random 

vector X is defined as

FX(x) = P{X ≤ x}

= P{X1 ≤ x1, X2 ≤ x2, …, Xn ≤ xn}
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• FX(x) is a real-valued function of n real variables (or of 
the n-vector x)

• FX(x) always has value between 0 and 1

• FX(x) is a non-decreasing, right-continuous function of 
each argument xi
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Joint CDF Properties

• limxi → –∞ FX(x) = 0

• If some of the xi → +∞, the corresponding random 
variables Xi disappear and we get the joint CDF of the 
remaining variables
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• Example: If FX,Y,Z(x,y,z) is the joint CDF of X, Y, Z, then 
FX,Y,Z(x,∞,z) = FX,Z(x,z) is the joint CDF of X and Z

• Even though this is still a joint CDF, it is nevertheless 
also a marginal CDF, since it describes a subset of the 
variables.

Discrete Random Variables: Joint PMF
• The joint PMF of X1, X2, …, Xn (the PMF of the random 

vector X) is defined as

pX(x) = P{X = x } (column vector x is sample value 
of X)

= P{X1 = x1, X2 = x2, …, Xn = xn}

• pX(x) ≥ 0

EC381/MN308 – 2007/2008 8

pX( )

• ∑ ∑…∑ pX(x) = 1
x1 x2 xn

• The marginal PDF of any subset of
{X1, X2, …, Xn} is obtained by summing over the 
unwanted variables

Continuous Random Variables: Joint PDF

Example
• Quiz 5.2

– Discrete random vectors X, Y (each with 3 components)
• Related by Y = AX
• Find joint PMF of Y, i.e., PY(y),  if:
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Example (continued)

• Range of Y: {1, 2, …}3
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Jointly Continuous Random Vectors

• X1, X2, …, Xn are called jointly continuous
random variables if
– X = (X1, X2, …, Xn) takes on all possible values in a 

region of nonzero volume in n-dimensional space, 
and
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and
– The probabilistic behavior is described by the n-

variate joint PDF

fX(x) = fX1,X2,…,Xn
(x1, x2, …, xn)

More properties

• X jointly continuous
– Let A be an event expressed in terms of the random 

vector X
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• Example: Quiz 5.1:  Y1, …, Y4 distributed as

{ }Let be event that max 1 2 .  Find [ ]?C  Y P C<i i
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Example (Solution)

• Note that C implies
for all i

y1

y2

y3

y41 2Y <i
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Marginal Probabilities

• Given any discrete random vector X with PMF 
function PX(x), get marginals for any subset 
of RVs in X by:
– Summing over all RVs not in subset
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g
– e.g. given X1, …, Xn

Marginal Probabilities: Continuous 
Random Vectors

• Given any continuous random vector X with PDF 
function fX(x), get marginal PDFs for any subset 
of RVs in X by:
– Integrating over all RVs not in subset
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– e.g. given X1, …, Xn

Example
• Quiz 5.3:  three-component X with PDF 

x1

x2

x3
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Independence

• Random variables X1, …, Xn are independent if 
and only if 
– Discrete: 
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– Continuous: 

Example
• Ex. 5.7, Q. 5.4

– W = (W1, W2, W3, W4)
– Clearly independent!
– Y defined as y1 = w1, y2 = w1 + w2,                                     

y3 = w3, y4 = w3 + w4

N t i d d t i di id ll b t h d
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– Not independent individually, but may have good 
properties

• Clearly, the part of the experiment that generates y1, y2 is 
independent of the part that generates y3, y4
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Covariance and Cross-Correlation

• Definition: Covariance of two RVs, X and Y, is 

• Definition: Correlation of X and Y is rX,Y = E [XY]
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• Identities

Covariance Matrix (2-Vectors)

• Form vector 

• Expected value
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• Covariance matrix 

Key Statistics

• Expected Value
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• Covariance Matrix for arbitrary vectors:

More Statistics

• Correlation matrix for arbitrary random vectors:
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Covariance Matrix
Expressed entirely in terms of pairs of components of X
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Properties of Covariance Matrix

• Covariance matrix ΣX:
– Symmetric matrix
– Positive semi-definite: For any nonzero vector a, 
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– Has all eigenvalues real-valued, non-negative
– Has a complete set of distinct eigenvectors (n of them)
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Example
• Quiz 5.6:  X with PDF 

x1

x2

x3
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Example 2
• Correlation and Covariance
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Linear Transformations
• Y = AX + b, for known m-by-n matrix A, m-vector b

• E [Y] = E [AX + b] = A E [X] + b
– Expectations are linear operations!

• Covariance of Y:    ΣY = A ΣXAT
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Functions of Random Vectors

• Given X, can define a derived random variable 
W = g(X) or a random vector Y = g(X) 
– Dimension of Y can be smaller or greater than 

dimension of X 
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– Implicit distribution on Y defined by map g() 

• Can take expectations

Special Case (Theorem 5.11)

• If A is an invertible matrix 1-1 correspondence 
between X, Y so that Y = AX + b can be written

X = A-1(Y – b)

• Change of variable formula yields PDF and CDF:
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Change of variable formula yields PDF and CDF:

Special Classes of Functions

• Special case: X is a random vector of n i.i.d. 
random variables X1, …, Xn

– CDF of Xi is FX(x)

• Define Z = maxi {X1 X } Find FZ(z)
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Define Z = maxi {X1, …, Xn}.  Find FZ(z)

Hint:  
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Another Special Case

• Define Z = mini {X1, …, Xn}.  Find FZ(z)

Hint: 
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Example

• Quiz 5.5
– Testing light bulbs yields 3 outcomes: G(ood), A(verage), B(ad)
– Each light bulb has P[G] = 0.3, P[A] = 0.5, P[B] = 0.2, 

independently
– Experiment: test 4 light bulbs.  
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p g
RV X1 = # of G, X2 = # of A, X3 = # of B

– Find PMF of X, marginal PMFs of Xi, and PMF of W = maxi(Xi)

Notation

• Can work with pairs of random vectors X, Y
– Extend notation for pairs of random variables

• Joint PMF for pairs of discrete random vectors
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• Joint PDF for pairs of jointly continuous random 
vectors

Statistics for Pairs of Random 
Vectors

• X, Y random vectors

• Vector Cross-Correlation
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• Vector Cross-Covariance

• Identity

Independence of Random Vectors

• Two random vectors X, Y are said to be 
independent if 
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Any component of X is independent of any 
component of Y

Sums of independent random 
variables

• Recall X, Y joint dependent RVs, and Z = X + Y
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• If X, Y independent 

• Convolution!  PMF and PDF of sum of 2 independent 
RVs is convolution of their individual PMFs or PDFs
– Generalizes to n independent RVs by induction
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Conditional Probability for Random 
Vectors

• Discrete Random Vectors: PMF of X given Y = y
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• Total Probability Theorem: 

Conditional Probability - 2

• Bayes’ Rule: Discrete Random Vectors 
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Conditional Probability - 3

• Continuous Random Vectors: PDF of X given      
Y = y
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• Total Probability Theorem: 

Conditional Probability - 4

• Bayes’ Rule: Continuous Random Vectors 
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Gaussian Random Vectors

• n random variables X = [X1, …, Xn]T are jointly 
continuous Gaussian if their joint PDF is 
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– Constant:

– Quadratic exponent: 

Properties of Gaussian Random 
Vectors

• If X is a Gaussian random vector, and A is a 
known m-by-n matrix, and b is a known m-vector, 

Y = AX + b is a Gaussian random vector
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– New mean: 

– New Covariance:

• Notation:  
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Pairs of Gaussian Random Vectors

• X, Y jointly Gaussian random vectors

• Y Notation: Cross-Covariance Matrix ΣX,Y
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• Joint Covariance
– Joint Vector 

– Joint Covariance 

Conditional Probability for 
Gaussian Random Vectors

• PDF of X given Y = y is also Gaussian! 
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– Numerator is exponent of negative quadratic in x, y
– Denominator is exponent of negative quadratic in y

Ratio is exponent of negative quadratic in x !!!

Conditional Probability: Gaussians 

•

– Scalar case:
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• Covariance of X given Y = y: 

Example - 1

• Quiz 5.7  Z is 2-D standard Normal (pair of 
independent, 0-mean, 1 variance RVs)
– X1 = 2 Z1 + Z2 + 2;   X2 = Z1 – Z2

– Calculate mean and variance:
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Example - 2

• Compute cross-covariance between Z and X1:
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• Compute E[Z|X1=x1] 

Example – 3 
• Compute covariance of estimation error: Covariance of Z given X1
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• Eigenvalues 0, 1 (nonnegative: it is a covariance)
– Not invertible conditional density of Z given X1 is not jointly 

continuous
– Z has 2 degrees of freedom in uncertainty.  Observing 1 of them 

reduces it to 1 degree of freedom… Hence, one zero eigenvalue


