

Moments and Central Moments		
Definitions (same as for discrete random variables)		
$\mu_X \equiv E[X]$	= mean (first moment) of X	
$E[X^n]$	= <i>n</i> -th moment of X	
E[X-a]	= (first) moment of X about a	
$E[(X-a)^n]$	= <i>n</i> -th moment of X about a	
$E[(X-\mu_X)^n]$	= <i>n</i> -th central moment of X	
$E[X - \mu_X]$	= first central moment of X	
$E[(X-\mu_x)^2]$	= second central moment of X = Var[X] = Variance	
Var[X]	= $E[X^2] - \mu_X^2$ (similar to moment of inertia around mean)	
$\sigma_X = {Var[X]}^1$	² = Standard deviation = spread around mean (similar to radius of gyration)	
EC381/MN308 - 2007/2008		2

Expectation	is of Linear Functions of a RV (same as for discrete case))
	Y = aX + b	
Mean	E[aX + b] = aE[X] + b	
The mean is i b. The expectati	multiplied by the same factor <i>a</i> and shifted by the same factor ion is a linear operation, i.e., the expectation of a weighted sum	
is the weighte	d sum of the expectations	
Variance	$Var[aX + b] = a^2 Var[X]$	
The variance is <u>Proof</u>	s multiplied by the square of <i>a</i> and is insensitive to the shift factor	r <i>b.</i>
Var[<i>aX</i>] = <i>E</i> [($aX^{2} - (E[aX])^{2} = a^{2} E[X^{2}] - (a\mu_{X})^{2}$	
= 2	$(E[X^2] - (\mu_{\chi})^2) = a^2 \operatorname{Var}[X]$	
C381/MN308 - 2007/2008		25

Expectations cannot always be defined:

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{-\infty}^{0} x f_X(x) dx + \int_{0}^{\infty} x f_X(x) dx$$

Since $xf_X(x) \ge 0$ for x > 0, but $xf_X(x) \le 0$ for x < 0, E[X] is the *difference* between two positive integrals over $(0, \infty)$ and $(-\infty, 0)$. If both integrals are infinite, E[X] is undefined. This does not mean, however, that the PDF is not useful (random fractals are often characterized by such PDFs).

Example

The Cauchy RV has a PDF $f_X(X) = [\pi(1+X^2)]^{-1}$

This PDF is symmetric about the origin but has long (power-law) tails.

The integral of $X[(\pi(1+X^2)]^{-1}]$ is of the form $\infty - \infty$ and E[X] is undefined. Some RVs have finite means but higher moments are undefined.

26