Lecture 4: Outline

1. Existence of extreme points.
2. Optimality of extreme points.
3. On the running time of algorithms and some complexity theory.
Existence of Extreme Points

A polyhedron $P \subset \mathbb{R}^n$ contains a line if $\exists \ x \in P$ and $d \in \mathbb{R}^n \ (d \neq 0)$ s.t. $x + \lambda d \in P$, $\forall \lambda \in \mathbb{R}$.

Theorem

Let $P = \{x \in \mathbb{R}^n \ | \ a_r^i x \geq b_i, \ i = 1, \ldots, m \} \neq \emptyset$. Then

\[P \text{ has a BFS } \iff \text{P contains no line} \]

Special cases:
- Bounded Polyhedra do not contain a line \Rightarrow have a BFS.
- Standard form polyhedra are in the positive orthant \Rightarrow do not contain a line \Rightarrow have a BFS.

Optimality of extreme points

Consider the LP of minimizing $c'x$ over a polyhedron $P \neq \emptyset$. WLOG assume P has a bfs (otherwise can write LP in standard form and then P will have a bfs).

Theorem

(The central LP thm.) Either
- Optimal cost $= -\infty$, or
- \exists a bfs which is optimal.

Proof: Start from an arbitrary $x \in P$. We can keep decreasing the cost by moving from point to point until we hit a bfs (otherwise the cost is $-\infty$). [\qed]
Remarks

- Previous thm. says that to find the optimum it suffices to consider only extreme points. This is what the **simplex method** does. Moving from bfs to bfs until it finds an optimum.

- In LP it is holds that **local minima** are also **global minima**, which is a far more general property. We will see that it holds in **convex programming** (optimization of convex function over a convex set). LP is a special case of convex programming.

Notation for the Running time of algorithms

Let \(f, g : \mathbb{R}_+ \to \mathbb{R}_+ \)

Definition

\[f(n) = O(g(n)) \text{ if } \exists n_0, c \geq 0 \text{ such that } f(n) \leq cg(n) \ \forall n \geq n_0. \]

Definition

\[f(n) = \Omega(g(n)) \text{ if } \exists n_0, c \geq 0 \text{ such that } f(n) \geq cg(n) \ \forall n \geq n_0. \]

Definition

\[f(n) = \Theta(g(n)) \text{ if both } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \text{ hold.} \]
Existence Optimality Complexity

Complexity Theory

I can’t find an efficient algorithm, but neither can all these famous people.

(from Garey & Johnson, 1979)

29/159 Yannis Paschalidis, Boston University SE524/EC524: Lecture 4

Complexity Theory (cont.)

Definition

(Reductions) Let Π_1, Π_2 two recognition problems. We say Π_1 transforms or reduces to Π_2 in polynomial time if there exists a poly-time algorithm which given an instance I_1 of Π_1 outputs an instance I_2 of Π_2 with the property: I_1 is a YES iff I_2 is a YES.

Definition

(NP-hard) A problem is NP-hard if ZOIP can be transformed to it in poly-time.

Definition

(Belongs to NP) A problem belongs to NP if it can be transformed to ZOIP in poly-time.

Definition

(NP-complete) A problem is NP-complete if it belongs to NP and is also NP-hard.