Problem Set 5 Due: Thursday, October 16, 2014

Readings: Chapter 5 of [BT].

Note: You would need to use an LP solver, for instance, CPLEX to which you have access.

Problem 1: Exercise 5.2 of [BT]

Problem 2: Exercise 5.7 of [BT]

Problem 3: Exercise 5.13 of [BT]

Problem 4

Cisco's 12000 series routers are produced in three factories F_1, F_2 and F_3 and shipped from the factories to two distribution centers D_1 and D_2 . Let c_{ij} the transportation cost (in \$/router) from factory F_i to distribution center D_j , for i = 1, 2, 3 and j = 1, 2. Let also p_i , i = 1, 2, 3, the production cost (in \$/router) at factory F_i . We have

$$\mathbf{C} = (c_{ij}) = \begin{bmatrix} 10 & 100 \\ 80 & 120 \\ 60 & 50 \end{bmatrix}, \qquad \mathbf{p} = (p_1, p_2, p_3) = (1100, 1400, 1250).$$

The monthly capacity at each factory i is denoted by u_i and the demand at distribution center j is denoted by d_j , for i = 1, 2, 3 and j = 1, 2. We have

 $\mathbf{u} = (u_1, u_2, u_3) = (800, 1170, 1000), \quad \mathbf{d} = (d_1, d_2) = (1500, 1200).$

Production should not exceed capacity at each factory and demand must be met at each distribution center.

- (a) Formulate as a linear programming problem the problem of devising a monthly production and transportation plan that minimizes the total production and transportation cost. You want to decide the number of routers produced at factory F_i and shipped to distribution center D_j for i = 1, 2, 3 and j = 1, 2. Use CPLEX or any other LP solver to solve the problem and obtain sensitivity information.
- (b) If the demand at D_1 increases by 100 routers, how is the optimal production and transportation cost affected ?

- (c) What is the impact on the total cost if we insist on producing one router at factory F_3 and shipping it to distribution center D_1 ?
- (d) Suppose the capacity at F_1 increases to 1600. What is the impact on the optimal cost ? If you can not find the cost exactly calculate bounds on the impact in the cost. Justify your answer.
- (e) Suppose that the transportation cost from F_1 to D_1 increases by \$ 30. What is the impact on the optimal cost ? What is the new optimal production and transportation plan ?